social networks
Recently Published Documents


TOTAL DOCUMENTS

28429
(FIVE YEARS 13702)

H-INDEX

198
(FIVE YEARS 48)

2022 ◽  
Vol 15 (1) ◽  
pp. 1-13
Author(s):  
David Otero ◽  
Patricia Martin-Rodilla ◽  
Javier Parapar

Social networks constitute a valuable source for documenting heritage constitution processes or obtaining a real-time snapshot of a cultural heritage research topic. Many heritage researchers use social networks as a social thermometer to study these processes, creating, for this purpose, collections that constitute born-digital archives potentially reusable, searchable, and of interest to other researchers or citizens. However, retrieval and archiving techniques used in social networks within heritage studies are still semi-manual, being a time-consuming task and hindering the reproducibility, evaluation, and open-up of the collections created. By combining Information Retrieval strategies with emerging archival techniques, some of these weaknesses can be left behind. Specifically, pooling is a well-known Information Retrieval method to extract a sample of documents from an entire document set (posts in case of social network’s information), obtaining the most complete and unbiased set of relevant documents on a given topic. Using this approach, researchers could create a reference collection while avoiding annotating the entire corpus of documents or posts retrieved. This is especially useful in social media due to the large number of topics treated by the same user or in the same thread or post. We present a platform for applying pooling strategies combined with expert judgment to create cultural heritage reference collections from social networks in a customisable, reproducible, documented, and shareable way. The platform is validated by building a reference collection from a social network about the recent attacks on patrimonial entities motivated by anti-racist protests. This reference collection and the results obtained from its preliminary study are available for use. This real application has allowed us to validate the platform and the pooling strategies for creating reference collections in heritage studies from social networks.


2022 ◽  
Vol 25 ◽  
pp. 100390
Author(s):  
Rahinatu S. Alare ◽  
Elaine T. Lawson ◽  
Adelina Mensah ◽  
Armand Yevide ◽  
Prosper Adiku

2022 ◽  
Vol 75 ◽  
pp. 102535
Author(s):  
Shuai Han ◽  
Hong Chen ◽  
Ruyin Long ◽  
Izhar Mithal Jiskani

2022 ◽  
Vol 70 ◽  
pp. 152-165
Author(s):  
Marva V. Goodson-Miller
Keyword(s):  

2022 ◽  
Vol 22 (1) ◽  
pp. 1-26
Author(s):  
Jingjing Wang ◽  
Wenjun Jiang ◽  
Kenli Li ◽  
Guojun Wang ◽  
Keqin Li

Predicting the popularity of web contents in online social networks is essential for many applications. However, existing works are usually under non-incremental settings. In other words, they have to rebuild models from scratch when new data occurs, which are inefficient in big data environments. It leads to an urgent need for incremental prediction, which can update previous results with new data and conduct prediction incrementally. Moreover, the promising direction of group-level popularity prediction has not been well treated, which explores fine-grained information while keeping a low cost. To this end, we identify the problem of incremental group-level popularity prediction, and propose a novel model IGPP to address it. We first predict the group-level popularity incrementally by exploiting the incremental CANDECOMP/PARAFCAC (CP) tensor decomposition algorithm. Then, to reduce the cumulative error by incremental prediction, we propose three strategies to restart the CP decomposition. To the best of our knowledge, this is the first work that identifies and solves the problem of incremental group-level popularity prediction. Extensive experimental results show significant improvements of the IGPP method over other works both in the prediction accuracy and the efficiency.


2023 ◽  
Vol 55 (1) ◽  
pp. 1-51
Author(s):  
Huacheng Li ◽  
Chunhe Xia ◽  
Tianbo Wang ◽  
Sheng Wen ◽  
Chao Chen ◽  
...  

Studying information diffusion in SNS (Social Networks Service) has remarkable significance in both academia and industry. Theoretically, it boosts the development of other subjects such as statistics, sociology, and data mining. Practically, diffusion modeling provides fundamental support for many downstream applications (e.g., public opinion monitoring, rumor source identification, and viral marketing). Tremendous efforts have been devoted to this area to understand and quantify information diffusion dynamics. This survey investigates and summarizes the emerging distinguished works in diffusion modeling. We first put forward a unified information diffusion concept in terms of three components: information, user decision, and social vectors, followed by a detailed introduction of the methodologies for diffusion modeling. And then, a new taxonomy adopting hybrid philosophy (i.e., granularity and techniques) is proposed, and we made a series of comparative studies on elementary diffusion models under our taxonomy from the aspects of assumptions, methods, and pros and cons. We further summarized representative diffusion modeling in special scenarios and significant downstream tasks based on these elementary models. Finally, open issues in this field following the methodology of diffusion modeling are discussed.


2022 ◽  
Vol 24 (3) ◽  
pp. 1-19
Author(s):  
Nikhlesh Pathik ◽  
Pragya Shukla

In this digital era, people are very keen to share their feedback about any product, services, or current issues on social networks and other platforms. A fine analysis of these feedbacks can give a clear picture of what people think about a particular topic. This work proposed an almost unsupervised Aspect Based Sentiment Analysis approach for textual reviews. Latent Dirichlet Allocation, along with linguistic rules, is used for aspect extraction. Aspects are ranked based on their probability distribution values and then clustered into predefined categories using frequent terms with domain knowledge. SentiWordNet lexicon uses for sentiment scoring and classification. The experiment with two popular datasets shows the superiority of our strategy as compared to existing methods. It shows the 85% average accuracy when tested on manually labeled data.


2022 ◽  
Vol 40 (2) ◽  
pp. 1-42
Author(s):  
Khashayar Gatmiry ◽  
Manuel Gomez-Rodriguez

Social media is an attention economy where broadcasters are constantly competing for attention in their followers’ feeds. Broadcasters are likely to elicit greater attention from their followers if their posts remain visible at the top of their followers’ feeds for a longer period of time. However, this depends on the rate at which their followers receive information in their feeds, which in turn depends on the broadcasters they follow. Motivated by this observation and recent calls for fairness of exposure in social networks, in this article, we look at the task of recommending links from the perspective of visibility optimization. Given a set of candidate links provided by a link recommendation algorithm, our goal is to find a subset of those links that would provide the highest visibility to a set of broadcasters. To this end, we first show that this problem reduces to maximizing a nonsubmodular nondecreasing set function under matroid constraints. Then, we show that the set function satisfies a notion of approximate submodularity that allows the standard greedy algorithm to enjoy theoretical guarantees. Experiments on both synthetic and real data gathered from Twitter show that the greedy algorithm is able to consistently outperform several competitive baselines.


2022 ◽  
Vol 24 (3) ◽  
pp. 0-0

In this digital era, people are very keen to share their feedback about any product, services, or current issues on social networks and other platforms. A fine analysis of these feedbacks can give a clear picture of what people think about a particular topic. This work proposed an almost unsupervised Aspect Based Sentiment Analysis approach for textual reviews. Latent Dirichlet Allocation, along with linguistic rules, is used for aspect extraction. Aspects are ranked based on their probability distribution values and then clustered into predefined categories using frequent terms with domain knowledge. SentiWordNet lexicon uses for sentiment scoring and classification. The experiment with two popular datasets shows the superiority of our strategy as compared to existing methods. It shows the 85% average accuracy when tested on manually labeled data.


Sign in / Sign up

Export Citation Format

Share Document