scholarly journals A power sum formula by Carlitz and its applications to permutation rational functions of finite fields

Author(s):  
Xiang-dong Hou
2010 ◽  
Vol 81 (3) ◽  
pp. 425-429 ◽  
Author(s):  
JOSÉ FELIPE VOLOCH

AbstractWe discuss the problem of constructing elements of multiplicative high order in finite fields of large degree over their prime field. We obtain such elements by evaluating rational functions on elliptic curves, at points whose order is small with respect to their degree. We discuss several special cases, including an old construction of Wiedemann, giving the first nontrivial estimate for the order of the elements in this construction.


1912 ◽  
Vol 6 (99) ◽  
pp. 332 ◽  
Author(s):  
W. F. Sheppard
Keyword(s):  

1993 ◽  
Vol 63 (1) ◽  
pp. 1-13 ◽  
Author(s):  
Gerhard Larcher

2014 ◽  
Vol 176 (2) ◽  
pp. 241-253 ◽  
Author(s):  
Domingo Gómez-Pérez ◽  
Igor E. Shparlinski

2005 ◽  
Vol 01 (01) ◽  
pp. 1-32 ◽  
Author(s):  
J. BOURGAIN

In this paper we establish new estimates on sum-product sets and certain exponential sums in finite fields of prime order. Our first result is an extension of the sum-product theorem from [8] when sets of different sizes are involed. It is shown that if [Formula: see text] and pε < |B|, |C| < |A| < p1-ε, then |A + B| + |A · C| > pδ (ε)|A|. Next we exploit the Szemerédi–Trotter theorem in finite fields (also obtained in [8]) to derive several new facts on expanders and extractors. It is shown for instance that the function f(x,y) = x(x+y) from [Formula: see text] to [Formula: see text] satisfies |F(A,B)| > pβ for some β = β (α) > α whenever [Formula: see text] and |A| ~ |B|~ pα, 0 < α < 1. The exponential sum ∑x∈ A,y∈Bεp(axy+bx2y2), ab ≠ 0 ( mod p), may be estimated nontrivially for arbitrary sets [Formula: see text] satisfying |A|, |B| > pρ where ρ < 1/2 is some constant. From this, one obtains an explicit 2-source extractor (with exponential uniform distribution) if both sources have entropy ratio at last ρ. No such examples when ρ < 1/2 seemed known. These questions were largely motivated by recent works on pseudo-randomness such as [2] and [3]. Finally it is shown that if pε < |A| < p1-ε, then always |A + A|+|A-1 + A-1| > pδ(ε)|A|. This is the finite fields version of a problem considered in [11]. If A is an interval, there is a relation to estimates on incomplete Kloosterman sums. In the Appendix, we obtain an apparently new bound on bilinear Kloosterman sums over relatively short intervals (without the restrictions of Karatsuba's result [14]) which is of relevance to problems involving the divisor function (see [1]) and the distribution ( mod p) of certain rational functions on the primes (cf. [12]).


Sign in / Sign up

Export Citation Format

Share Document