scholarly journals 1H, 13C, and 15N chemical shift assignment of human PACSIN1/syndapin I SH3 domain in solution

2020 ◽  
Vol 14 (2) ◽  
pp. 175-178
Author(s):  
Emmanuelle Boll ◽  
Francois-Xavier Cantrelle ◽  
Isabelle Landrieu ◽  
Matthieu Hirel ◽  
Davy Sinnaeve ◽  
...  
Author(s):  
Christian Richter ◽  
Katharina F. Hohmann ◽  
Sabrina Toews ◽  
Daniel Mathieu ◽  
Nadide Altincekic ◽  
...  

AbstractThe stem-loop (SL1) is the 5'-terminal structural element within the single-stranded SARS-CoV-2 RNA genome. It is formed by nucleotides 7–33 and consists of two short helical segments interrupted by an asymmetric internal loop. This architecture is conserved among Betacoronaviruses. SL1 is present in genomic SARS-CoV-2 RNA as well as in all subgenomic mRNA species produced by the virus during replication, thus representing a ubiquitous cis-regulatory RNA with potential functions at all stages of the viral life cycle. We present here the 1H, 13C and 15N chemical shift assignment of the 29 nucleotides-RNA construct 5_SL1, which denotes the native 27mer SL1 stabilized by an additional terminal G-C base-pair.


1998 ◽  
Vol 76 (2-3) ◽  
pp. 341-350 ◽  
Author(s):  
Voula Kanelis ◽  
Neil A Farrow ◽  
Lewis E Kay ◽  
Daniela Rotin ◽  
Julie D Forman-Kay

Nedd4 (neuronal precursor cell-expressed developmentally down-regulated 4) is a ubiquitin-protein ligase containing multiple WW domains. We have previously demonstrated the association between the WW domains of Nedd4 and PPxY (PY) motifs of the epithelial sodium channel (ENaC). In this paper, we report the assignment of backbone 1Hα, 1HN, 15N, 13C', 13Cα, and aliphatic 13C resonances of a fragment of rat Nedd4 (rNedd4) containing the two C-terminal WW domains, WW(II+III), complexed to a PY motif-containing peptide derived from the β subunit of rat ENaC, the βP2 peptide. The secondary structures of these two WW domains, determined from chemical shifts of 13Cα and 13Cβ resonances, are virtually identical to those of the WW domains of the Yes-associated protein YAP65 and the peptidyl-prolyl isomerase Pin1. Triple resonance experiments that detect the 1Hα chemical shift were necessary to complete the chemical shift assignment, owing to the large number of proline residues in this fragment of rNedd4. A new experiment, which correlates sequential residues via their 15N nuclei and also detects 1Hα chemical shifts, is introduced and its utility for the chemical shift assignment of sequential proline residues is discussed. Data collected on the WW(II+III)-βP2 complex indicate that these WW domains have different affinities for the βP2 peptide.Key words: WW domain, PY motif, Nedd4, ENaC, NMR.


2019 ◽  
Vol 13 (1) ◽  
pp. 195-199
Author(s):  
N. Herr ◽  
M. N. Webby ◽  
E. M. M. Bulloch ◽  
M. Schmitz ◽  
R. L. Kingston

Sign in / Sign up

Export Citation Format

Share Document