sh3 domain
Recently Published Documents


TOTAL DOCUMENTS

987
(FIVE YEARS 72)

H-INDEX

100
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Ben F Brian ◽  
Frances V Sjaastad ◽  
Tanya S Freedman

The kinase Csk is the primary negative regulator of the Src-family kinases (SFKs, i.e., Lck, Fyn, Lyn, Hck, Fgr, Blk, Src, Yes), phosphorylating a tyrosine on the SFK C-terminal tail that nucleates an autoinhibitory complex. Csk also binds phosphatases, including PTPN12 (PTP-PEST) and immune-cell PTPN22 (Pep/LYP), which dephosphorylate the SFK activation loop to promote autoinhibition. High local concentrations of Csk are required to promote its negative-regulatory function, and Csk-binding proteins (e.g., CBP/PAG1) oligomerize within membrane microdomains. Purified Csk also homodimerizes in solution through an interface that overlaps the phosphatase binding site. Here we demonstrate that Csk can homodimerize in Jurkat T cells, in competition with PTPN22 binding. We designed SH3-domain mutations in Csk that selectively impair homodimerization (H21I) or PTPN22 binding (K43D) and verified their kinase activity in solution. Csk W47A, an SH3-domain mutant commonly used to block PTPN22 binding, also impairs homodimerization. Csk H21I and K43D will be useful tools for dissecting the protein-specific drivers of autoimmunity mediated by the human polymorphism PTPN22 R620W, which impairs interaction with both Csk and with the E3 ubiquitin ligase TRAF3. Future investigations of Csk homodimer activity and phosphatase interactions may reveal new facets of SFK regulation in hematopoietic and non-hematopoietic cells.


2022 ◽  
Author(s):  
Maciek Adamowski ◽  
Ivana Matijević ◽  
Madhumitha Narasimhan ◽  
Jiří Friml

Clathrin-mediated endocytosis (CME) is an essential process of cellular cargo uptake operating in all eukaryotes. In animal and yeast, CME involves BAR-SH3 domain proteins, endophilins and amphiphysins, which function at the conclusion of CME to recruit factors for vesicle scission and uncoating. Arabidopsis thaliana contains BAR-SH3 domain proteins SH3P1-3, but their role is poorly understood. We identify SH3P1-3 as functional homologues of endophilin/amphiphysin. SH3P1-3 bind to discrete foci at the plasma membrane (PM), and colocalization indicates late recruitment of SH3P2 to a subset of clathrin-coated pits. PM recruitment pattern of SH3P2 is nearly identical to its interactor, a putative vesicle uncoating factor AUXILIN-LIKE1, and SH3P1-3 are required for most of AUXILIN-LIKE1 PM binding. This indicates a plant-specific modification of CME, where BAR-SH3 proteins recruit auxilin-like uncoating factors, rather than the uncoating phosphatases synaptojanins. Furthermore, we identify an unexpected redundancy between SH3P1-3 and a plant-specific endocytic adaptor, TPLATE complex, showing a contribution of SH3P1-3 to gross CME.


Author(s):  
Xiaomin Chen ◽  
Fengqi Liu ◽  
Dade Rong ◽  
Limei Xu ◽  
Xiuzhen Tong ◽  
...  

Background: SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) is downregulated in acute myeloid leukemia (AML). Clinically, DNA demethylating drug decitabine (DAC) combined with traditional chemotherapies reveals better efficacy on AML patients than the conventional chemotherapies alone. Our previous results revealed that human SH3-domain-binding glutamic acid-rich protein-like protein (SH3BGRL) plays a tumor suppressive role in AML but whether there is a connection between DAC and SH3BGRL expression remains elusive. Methods: Here, we tentatively treated AML cell lines U937, MV4, and HL-60 with DAC and Western Blots. RT-PCR was used to detect the expression of SH3BGRL. Cell proliferation and apoptosis were determined using Annexin V/7-AAD staining. Real-time RT-PCR and Western blot were used to determine the expression of SH3BGRL mRNA and protein. Methylation-specific PCR was used to quantify the DNA methylation in AML cell lines.Results: DAC had cytotoxicity in HL-60, MV4, and U937. In U937 cell lines, treatment with DAC showed the up-regulation of caspase, PARP, and SH3BGRL. Upon treatment, up-regulation of SH3BGRL mRNA and protein was dose-dependent and this activity was partially inhibited in endogenous SH3BGRL knockdown cell lines. Results: DAC had cytotoxicity in HL-60, MV4, and U937. In U937 cell lines, treatment with DAC showed the up-regulation of caspase, PARP, and SH3BGRL. Upon treatment, up-regulation of SH3BGRL mRNA and protein was dose-dependent and this activity was partially inhibited in endogenous SH3BGRL knockdown cell lines. Conclusion: Thus, our results demonstrated a possibly cytotoxic role of DAC on AML cells by upregulation of SH3BGRL expression at epigenetic modulation level and the methylation status in the SH3BGRL promoter region could be a supplemental diagnostic marker to the precise administration of DAC to AML patients.


Author(s):  
Chengwen Wei ◽  
Mengwen Sun ◽  
Xiaoxuan Sun ◽  
Hu Meng ◽  
Qiongwei Li ◽  
...  

AbstractThe radial migration of cortical pyramidal neurons (PNs) during corticogenesis is necessary for establishing a multilayered cerebral cortex. Neuronal migration defects are considered a critical etiology of neurodevelopmental disorders, including autism spectrum disorders (ASDs), schizophrenia, epilepsy, and intellectual disability (ID). TRIO is a high-risk candidate gene for ASDs and ID. However, its role in embryonic radial migration and the etiology of ASDs and ID are not fully understood. In this study, we found that the in vivo conditional knockout or in utero knockout of Trio in excitatory precursors in the neocortex caused aberrant polarity and halted the migration of late-born PNs. Further investigation of the underlying mechanism revealed that the interaction of the Trio N-terminal SH3 domain with Myosin X mediated the adherence of migrating neurons to radial glial fibers through regulating the membrane location of neuronal cadherin (N-cadherin). Also, independent or synergistic overexpression of RAC1 and RHOA showed different phenotypic recoveries of the abnormal neuronal migration by affecting the morphological transition and/or the glial fiber-dependent locomotion. Taken together, our findings clarify a novel mechanism of Trio in regulating N-cadherin cell surface expression via the interaction of Myosin X with its N-terminal SH3 domain. These results suggest the vital roles of the guanine nucleotide exchange factor 1 (GEF1) and GEF2 domains in regulating radial migration by activating their Rho GTPase effectors in both distinct and cooperative manners, which might be associated with the abnormal phenotypes in neurodevelopmental disorders.


2021 ◽  
Vol 22 (24) ◽  
pp. 13174
Author(s):  
Livia Pagano ◽  
Francesca Malagrinò ◽  
Caterina Nardella ◽  
Stefano Gianni ◽  
Angelo Toto

Crkl is a protein involved in the onset of several cancer pathologies that exerts its function only through its protein–protein interaction domains, a SH2 domain and two SH3 domains. SH3 domains are small protein interaction modules that mediate the binding and recognition of proline-rich sequences. One of the main physiological interactors of Crkl is C3G (also known as RAPGEF1), an interaction with key implications in regulating cellular growth and differentiation, cell morphogenesis and adhesion processes. Thus, understanding the interaction between Crkl and C3G is fundamental to gaining information about the molecular determinants of the several cancer pathologies in which these proteins are involved. In this paper, through a combination of fast kinetics at different experimental conditions and site-directed mutagenesis, we characterize the binding reaction between the N-SH3 domain of Crkl and a peptide mimicking a specific portion of C3G. Our results show a clear effect of pH on the stability of the complex, due to the protonation of negatively charged residues in the binding pocket of N-SH3. Our results are discussed under the light of previous work on SH3 domains.


2021 ◽  
Author(s):  
Yue Shi ◽  
Kaixuan Zhao ◽  
Guang Yang ◽  
Jia Yu ◽  
Yuxin Li ◽  
...  

Abstract Endocytosis is controlled by a well-orchestrated molecular machinery, where the individual players as well as their precise interactions are not fully understood. We now show that syndapin I/PACSIN 1 is expressed in pancreatic β cells and that its knockdown abrogates β cell endocytosis leading to disturbed plasma membrane protein homeostasis, as exemplified by an elevated density of L-type Ca2+ channels. Intriguingly, inositol hexakisphosphate (InsP6) activates casein kinase 2 (CK2) phosphorylating syndapin I/PACSIN 1, promoting interactions between syndapin I/PACSIN 1 and neural Wiskott-Aldrich syndrome protein (N-WASP) thereby driving β cell endocytosis. Dominant-negative interference with endogenous syndapin I/PACSIN 1 protein complexes, by overexpression of the syndapin I/PACSIN 1 SH3 domain, decreases InsP6-stimulated endocytosis. InsP6 thus promotes syndapin I/PACSIN 1 priming by CK2-dependent phosphorylation, which endows the syndapin I/PACSIN 1 SH3 domain with the capability to interact with the endocytic machinery and thereby initiate endocytosis, as exemplified in β cells.


2021 ◽  
Vol 53 ◽  
pp. S205
Author(s):  
L. Brodin ◽  
E. Sopova ◽  
F. Gerth ◽  
C. Freund ◽  
O. Shupliakov

2021 ◽  
Vol 17 (11) ◽  
pp. e1009728
Author(s):  
Zhe Zhao ◽  
Riku Fagerlund ◽  
Helena Tossavainen ◽  
Kristina Hopfensperger ◽  
Rishikesh Lotke ◽  
...  

The accessory protein Nef of human and simian immunodeficiency viruses (HIV and SIV) is an important pathogenicity factor known to interact with cellular protein kinases and other signaling proteins. A canonical SH3 domain binding motif in Nef is required for most of these interactions. For example, HIV-1 Nef activates the tyrosine kinase Hck by tightly binding to its SH3 domain. An archetypal contact between a negatively charged SH3 residue and a highly conserved arginine in Nef (Arg77) plays a key role here. Combining structural analyses with functional assays, we here show that Nef proteins have also developed a distinct structural strategy—termed the "R-clamp”—that favors the formation of this salt bridge via buttressing Arg77. Comparison of evolutionarily diverse Nef proteins revealed that several distinct R-clamps have evolved that are functionally equivalent but differ in the side chain compositions of Nef residues 83 and 120. Whereas a similar R-clamp design is shared by Nef proteins of HIV-1 groups M, O, and P, as well as SIVgor, the Nef proteins of SIV from the Eastern chimpanzee subspecies (SIVcpzP.t.s.) exclusively utilize another type of R-clamp. By contrast, SIV of Central chimpanzees (SIVcpzP.t.t.) and HIV-1 group N strains show more heterogenous R-clamp design principles, including a non-functional evolutionary intermediate of the aforementioned two classes. These data add to our understanding of the structural basis of SH3 binding and kinase deregulation by Nef, and provide an interesting example of primate lentiviral protein evolution.


Sign in / Sign up

Export Citation Format

Share Document