scholarly journals Plasmonics of regular shape particles, a simple group theory approach

Nano Research ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1597-1603
Author(s):  
Sarra Mitiche ◽  
Sylvie Marguet ◽  
Fabrice Charra ◽  
Ludovic Douillard
1983 ◽  
Vol 148 (2) ◽  
pp. 346-380 ◽  
Author(s):  
Y Alhassid ◽  
F Gürsey ◽  
F Iachello
Keyword(s):  

Author(s):  
Zhenfeng Wu

Denote by [Formula: see text] the number of Sylow [Formula: see text]-subgroups of [Formula: see text]. For every subgroup [Formula: see text] of [Formula: see text], it is easy to see that [Formula: see text], but [Formula: see text] does not divide [Formula: see text] in general. Following [W. Guo and E. P. Vdovin, Number of Sylow subgroups in finite groups, J. Group Theory 21(4) (2018) 695–712], we say that a group [Formula: see text] satisfies DivSyl(p) if [Formula: see text] divides [Formula: see text] for every subgroup [Formula: see text] of [Formula: see text]. In this paper, we show that “almost for every” finite simple group [Formula: see text], there exists a prime [Formula: see text] such that [Formula: see text] does not satisfy DivSyl(p).


2003 ◽  
Vol 44 (10) ◽  
pp. 4467 ◽  
Author(s):  
Shi-Hai Dong ◽  
Guo-Hua Sun ◽  
Dušan Popov

1993 ◽  
Vol 28 (4) ◽  
pp. 299-302 ◽  
Author(s):  
B. J. Yang ◽  
X. G. Zhang

2011 ◽  
Vol 83 (6) ◽  
Author(s):  
Charles M. Reinke ◽  
Teofilo M. De la Mata Luque ◽  
Mehmet F. Su ◽  
Michael B. Sinclair ◽  
Ihab El-Kady

1986 ◽  
Vol 167 (1) ◽  
pp. 181-200 ◽  
Author(s):  
Y. Alhassid ◽  
F. Gürsey ◽  
F. Iachello
Keyword(s):  

1998 ◽  
Vol 114 (2) ◽  
pp. 127-183 ◽  
Author(s):  
A. D. Mironov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document