scholarly journals Improvement in group identification of dojo loach, Misgurnus anguillicaudatus, using PCR-restriction fragment length polymorphism

Author(s):  
Masamichi Kuroda ◽  
Takafumi Fujimoto ◽  
Etsuro Yamaha ◽  
Katsutoshi Arai
2021 ◽  
Author(s):  
Masamichi Kuroda ◽  
Takafumi Fujimoto ◽  
Etsuro Yamaha ◽  
Katsutoshi Arai

Abstract Most wild types of dojo loach (Misgurnus anguillicaudatus) are gonochoristic diploids that are genetically diversified groups (A and B, further subdivided into B1 and B2), while clonal lineages inhabit certain localities in Japan. Through a series of genetic studies including DNA markers, the clonal loaches were deemed to originate from a hybridization event(s) between the A and B1 groups. However, combined analyses with other DNA markers are needed to identify each genetic group. In this study, we improved the PCR-restriction fragment length polymorphism (RFLP) analysis of the recombination activating gene 1 (RAG1) gene using digestion with two restriction enzymes, PvuII and StuI. The improved RAG1-RFLP analysis showed different fragment patterns for each group: two fragments (245 and 198 bp) for group A, three fragments (198, 147, and 98 bp) for group B1, and a single fragment (443 bp) for group B2. The clonal loaches exhibited four fragments (245, 198, 147, and 98 bp) derived from both groups A and B1. Moreover, the DNA markers were able to detect two different hybrid genotypes (A × B2 and B1 × B2). Thus, the improved RAG1-RFLP markers allowed for quick and accurate group identification of the dojo loaches.


Blood ◽  
1994 ◽  
Vol 83 (2) ◽  
pp. 566-572 ◽  
Author(s):  
CA Hyland ◽  
LC Wolter ◽  
YW Liew ◽  
A Saul

Abstract Polymorphisms within the Rh blood group system have been defined by serologic agglutination methods, but have not yet been defined at the DNA level. Two closely related genes associated with the Rh D antigen and with the Rh C/c and E/e antigens have been cloned. We used a Southern analysis incorporating probes to the 5′ and 3′ regions of the Rh C, E gene and D gene to identify polymorphisms associated with Rh C/c and E/e antigens, respectively. The D gene dosage could be determined by comparing the relative intensities of the D bands with bands from the 5′ and 3′ region of the Rh C, E gene. The concordance between restriction fragment length polymorphism (RFLP) patterns and serologic phenotypes for 102 randomly selected blood donors was 100% for C, e, and D, 94.8% for c, and 94.3% for E. The data are consistent with the sequences encoding the C/c epitopes residing on the 5′ side of those for the E/e epitopes. All samples discordant for the 3′ probe and E had the cE (r″) serotype. These data show that the gene coding for the cE serotype is different in Rh-positive and -negative individuals. The study demonstrates that Rh DNA typing, including D gene dosage measurements and Rh gene haplotyping, may supplement traditional serotyping methods in transfusion medicine.


Sign in / Sign up

Export Citation Format

Share Document