scholarly journals Monte Carlo construction of cubature on Wiener space

Author(s):  
Satoshi Hayakawa ◽  
Ken’ichiro Tanaka

AbstractIn this paper, we investigate application of mathematical optimization to construction of a cubature formula on Wiener space, which is a weak approximation method of stochastic differential equations introduced by Lyons and Victoir (Proc R Soc Lond A 460:169–198, 2004). After giving a brief review on the cubature theory on Wiener space, we show that a cubature formula of general dimension and degree can be obtained through a Monte Carlo sampling and linear programming. This paper also includes an extension of stochastic Tchakaloff’s theorem, which technically yields the proof of our primary result.

2019 ◽  
Vol 25 (2) ◽  
pp. 97-120 ◽  
Author(s):  
Riu Naito ◽  
Toshihiro Yamada

Abstract This paper proposes a new third-order discretization algorithm for multidimensional Itô stochastic differential equations driven by Brownian motions. The scheme is constructed by the Euler–Maruyama scheme with a stochastic weight given by polynomials of Brownian motions, which is simply implemented by a Monte Carlo method. The method of Watanabe distributions on Wiener space is effectively applied in the computation of the polynomial weight of Brownian motions. Numerical examples are shown to confirm the accuracy of the scheme.


2009 ◽  
Vol 5 (8) ◽  
pp. 1968-1984 ◽  
Author(s):  
Jerome Nilmeier ◽  
Matthew P. Jacobson

Sign in / Sign up

Export Citation Format

Share Document