Computational Optimization and Applications
Latest Publications


TOTAL DOCUMENTS

1589
(FIVE YEARS 282)

H-INDEX

56
(FIVE YEARS 6)

Published By Springer-Verlag

1573-2894, 0926-6003

Author(s):  
Yakui Huang ◽  
Yu-Hong Dai ◽  
Xin-Wei Liu ◽  
Hongchao Zhang

Author(s):  
Alberto De Marchi

AbstractThis paper introduces QPDO, a primal-dual method for convex quadratic programs which builds upon and weaves together the proximal point algorithm and a damped semismooth Newton method. The outer proximal regularization yields a numerically stable method, and we interpret the proximal operator as the unconstrained minimization of the primal-dual proximal augmented Lagrangian function. This allows the inner Newton scheme to exploit sparse symmetric linear solvers and multi-rank factorization updates. Moreover, the linear systems are always solvable independently from the problem data and exact linesearch can be performed. The proposed method can handle degenerate problems, provides a mechanism for infeasibility detection, and can exploit warm starting, while requiring only convexity. We present details of our open-source C implementation and report on numerical results against state-of-the-art solvers. QPDO proves to be a simple, robust, and efficient numerical method for convex quadratic programming.


Author(s):  
Barbara Kaltenbacher ◽  
Kha Van Huynh

AbstractIn this paper we study the formulation of inverse problems as constrained minimization problems and their iterative solution by gradient or Newton type methods. We carry out a convergence analysis in the sense of regularization methods and discuss applicability to the problem of identifying the spatially varying diffusivity in an elliptic PDE from different sets of observations. Among these is a novel hybrid imaging technology known as impedance acoustic tomography, for which we provide numerical experiments.


Author(s):  
Xin Jiang ◽  
Lieven Vandenberghe

AbstractWe present a new variant of the Chambolle–Pock primal–dual algorithm with Bregman distances, analyze its convergence, and apply it to the centering problem in sparse semidefinite programming. The novelty in the method is a line search procedure for selecting suitable step sizes. The line search obviates the need for estimating the norm of the constraint matrix and the strong convexity constant of the Bregman kernel. As an application, we discuss the centering problem in large-scale semidefinite programming with sparse coefficient matrices. The logarithmic barrier function for the cone of positive semidefinite completable sparse matrices is used as the distance-generating kernel. For this distance, the complexity of evaluating the Bregman proximal operator is shown to be roughly proportional to the cost of a sparse Cholesky factorization. This is much cheaper than the standard proximal operator with Euclidean distances, which requires an eigenvalue decomposition.


Sign in / Sign up

Export Citation Format

Share Document