Complete convergence of moving average process based on widely orthant dependent random variables

Author(s):  
Xinran Tao ◽  
Yi Wu ◽  
Hao Xia ◽  
Xuejun Wang
2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Wenzhi Yang ◽  
Shuhe Hu ◽  
Xuejun Wang

Under some simple conditions, by using some techniques such as truncated method for random variables (see e.g., Gut (2005)) and properties of martingale differences, we studied the moving process based on martingale differences and obtained complete convergence and complete moment convergence for this moving process. Our results extend some related ones.


2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Wenzhi Yang ◽  
Xuejun Wang ◽  
Nengxiang Ling ◽  
Shuhe Hu

We investigate the moving average process such thatXn=∑i=1∞aiYi+n,n≥1, where∑i=1∞|ai|<∞and{Yi,1≤i<∞}is a sequence of asymptotically almost negatively associated (AANA) random variables. The complete convergence, complete moment convergence, and the existence of the moment of supermum of normed partial sums are presented for this moving average process.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Pingyan Chen ◽  
Soo Hak Sung

AbstractThe complete convergence results for weighted sums of widely orthant-dependent random variables are obtained. A strong law of large numbers for weighted sums of widely orthant-dependent random variables is also obtained. Our results extend and generalize some results of Chen and Sung (J. Inequal. Appl. 2018:121, 2018), Zhang et al. (J. Math. Inequal. 12:1063–1074, 2018), Chen and Sung (Stat. Probab. Lett. 154:108544, 2019), Lang et al. (Rev. Mat. Complut., 2020, 10.1007/s13163-020-00369-5), and Liang (Stat. Probab. Lett. 48:317–325, 2000).


Sign in / Sign up

Export Citation Format

Share Document