convergence results
Recently Published Documents


TOTAL DOCUMENTS

1000
(FIVE YEARS 258)

H-INDEX

42
(FIVE YEARS 5)

Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 273
Author(s):  
Mujahid Abbas ◽  
Muhammad Waseem Asghar ◽  
Manuel De la Sen

The aim of this paper is to propose a new faster iterative scheme (called AA-iteration) to approximate the fixed point of (b,η)-enriched contraction mapping in the framework of Banach spaces. It is also proved that our iteration is stable and converges faster than many iterations existing in the literature. For validity of our proposed scheme, we presented some numerical examples. Further, we proved some strong and weak convergence results for b-enriched nonexpansive mapping in the uniformly convex Banach space. Finally, we approximate the solution of delay fractional differential equations using AA-iterative scheme.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 223
Author(s):  
Pedro González-Rodelas ◽  
Miguel Pasadas ◽  
Abdelouahed Kouibia ◽  
Basim Mustafa

In this paper we propose an approximation method for solving second kind Volterra integral equation systems by radial basis functions. It is based on the minimization of a suitable functional in a discrete space generated by compactly supported radial basis functions of Wendland type. We prove two convergence results, and we highlight this because most recent published papers in the literature do not include any. We present some numerical examples in order to show and justify the validity of the proposed method. Our proposed technique gives an acceptable accuracy with small use of the data, resulting also in a low computational cost.


2022 ◽  
Vol 21 ◽  
pp. 9-16
Author(s):  
O. Ababneh

The purpose of this paper is to propose new modified Newton’s method for solving nonlinear equations and free from second derivative. Convergence results show that the order of convergence is four. Several numerical examples are given to illustrate that the new iterative algorithms are effective.In the end, we present the basins of attraction to observe the fractal behavior and dynamical aspects of the proposed algorithms.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 67
Author(s):  
Jincheng Shi ◽  
Shiguang Luo

We study the structural stability for the double-diffusion perturbation equations. Using the a priori bounds, the convergence results on the reaction boundary coefficients k1, k2 and the Lewis coefficient Le could be obtained with the aid of some Poincare´ inequalities. The results showed that the structural stability is valid for the the double-diffusion perturbation equations with reaction boundary conditions. Our results can be seen as a version of symmetry in inequality for studying the structural stability.


Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 135
Author(s):  
Stoil I. Ivanov

In this paper, we establish two local convergence theorems that provide initial conditions and error estimates to guarantee the Q-convergence of an extended version of Chebyshev–Halley family of iterative methods for multiple polynomial zeros due to Osada (J. Comput. Appl. Math. 2008, 216, 585–599). Our results unify and complement earlier local convergence results about Halley, Chebyshev and Super–Halley methods for multiple polynomial zeros. To the best of our knowledge, the results about the Osada’s method for multiple polynomial zeros are the first of their kind in the literature. Moreover, our unified approach allows us to compare the convergence domains and error estimates of the mentioned famous methods and several new randomly generated methods.


2021 ◽  
Vol 7 (2) ◽  
pp. 59
Author(s):  
Austine Efut Ofem ◽  
Unwana Effiong Udofia ◽  
Donatus Ikechi Igbokwe

This paper presents a new iterative algorithm for approximating the fixed points of multivalued generalized \(\alpha\)–nonexpansive mappings. We study the stability result of our new iterative algorithm for a larger concept of stability known as weak \(w^2\)–stability. Weak and strong convergence results of the proposed iterative algorithm are also established. Furthermore, we show numerically that our new iterative algorithm outperforms several known iterative algorithms for multivalued generalized \(\alpha\)–nonexpansive mappings. Again, as an application, we use our proposed iterative algorithm to find the solution of nonlinear Volterra delay integro-differential equations. Finally, we provide an illustrative example to validate the mild conditions used in the result of the application part of this study. Our results improve, generalize and unify several results in the existing literature.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
M'Hamed El-Louh ◽  
Mohammed El Allali ◽  
Fatima Ezzaki

PurposeIn this work, the authors are interested in the notion of vector valued and set valued Pettis integrable pramarts. The notion of pramart is more general than that of martingale. Every martingale is a pramart, but the converse is not generally true.Design/methodology/approachIn this work, the authors present several properties and convergence theorems for Pettis integrable pramarts with convex weakly compact values in a separable Banach space.FindingsThe existence of the conditional expectation of Pettis integrable mutifunctions indexed by bounded stopping times is provided. The authors prove the almost sure convergence in Mosco and linear topologies of Pettis integrable pramarts with values in (cwk(E)) the family of convex weakly compact subsets of a separable Banach space.Originality/valueThe purpose of the present paper is to present new properties and various new convergence results for convex weakly compact valued Pettis integrable pramarts in Banach space.


Author(s):  
Manuel Radons ◽  
Siegfried M. Rump

AbstractLet A be a real $$n\times n$$ n × n matrix and $$z,b\in \mathbb R^n$$ z , b ∈ R n . The piecewise linear equation system $$z-A\vert z\vert = b$$ z - A | z | = b is called an absolute value equation. In this note we consider two solvers for uniquely solvable instances of the latter problem, one direct, one semi-iterative. We slightly extend the existing correctness, resp. convergence, results for the latter algorithms and provide numerical tests.


Sign in / Sign up

Export Citation Format

Share Document