moving average
Recently Published Documents


TOTAL DOCUMENTS

6522
(FIVE YEARS 3403)

H-INDEX

86
(FIVE YEARS 24)

2022 ◽  
Vol 22 (2) ◽  
pp. 1-26
Author(s):  
Mohammad Shorfuzzaman ◽  
M. Shamim Hossain

Green IoT primarily focuses on increasing IoT sustainability by reducing the large amount of energy required by IoT devices. Whether increasing the efficiency of these devices or conserving energy, predictive analytics is the cornerstone for creating value and insight from large IoT data. This work aims at providing predictive models driven by data collected from various sensors to model the energy usage of appliances in an IoT-based smart home environment. Specifically, we address the prediction problem from two perspectives. Firstly, an overall energy consumption model is developed using both linear and non-linear regression techniques to identify the most relevant features in predicting the energy consumption of appliances. The performances of the proposed models are assessed using a publicly available dataset comprising historical measurements from various humidity and temperature sensors, along with total energy consumption data from appliances in an IoT-based smart home setup. The prediction results comparison show that LSTM regression outperforms other linear and ensemble regression models by showing high variability ( R 2 ) with the training (96.2%) and test (96.1%) data for selected features. Secondly, we develop a multi-step time-series model using the auto regressive integrated moving average (ARIMA) technique to effectively forecast future energy consumption based on past energy usage history. Overall, the proposed predictive models will enable consumers to minimize the energy usage of home appliances and the energy providers to better plan and forecast future energy demand to facilitate green urban development.


A novel corona virus, COVID-19 is spreading across different countries in an alarming proportion and it has become a major threat to the existence of human community. With more than eight lakh death count within a very short span of seven months, this deadly virus has affected more than 24 million people across 213 countries and territories around the world. Time-series analysis, modeling and forecasting is an important research area that explores the hidden insights from larger set of time-bound data for arriving better decisions. In this work, data analysis on COVID-19 dataset is performed by comparing the top six populated countries in the world. The data used for the evaluation is taken for a time period from 22nd January 2020 to 23rd August 2020.A novel time-series forecasting approach based on Auto-regressive integrated moving average (ARIMA) model is also proposed. The results will help the researchers from medical and scientific community to gauge the trend of the disease spread and improvise containment strategies accordingly.


Author(s):  
Arunkumar P. M. ◽  
Lakshmana Kumar Ramasamy ◽  
Amala Jayanthi M.

A novel corona virus, COVID-19 is spreading across different countries in an alarming proportion and it has become a major threat to the existence of human community. With more than eight lakh death count within a very short span of seven months, this deadly virus has affected more than 24 million people across 213 countries and territories around the world. Time-series analysis, modeling and forecasting is an important research area that explores the hidden insights from larger set of time-bound data for arriving better decisions. In this work, data analysis on COVID-19 dataset is performed by comparing the top six populated countries in the world. The data used for the evaluation is taken for a time period from 22nd January 2020 to 23rd August 2020.A novel time-series forecasting approach based on Auto-regressive integrated moving average (ARIMA) model is also proposed. The results will help the researchers from medical and scientific community to gauge the trend of the disease spread and improvise containment strategies accordingly.


2022 ◽  
pp. 1-39
Author(s):  
Zhicheng Geng ◽  
Zhanxuan Hu ◽  
Xinming Wu ◽  
Luming Liang ◽  
Sergey Fomel

Detecting subsurface salt structures from seismic images is important for seismic structural analysis and subsurface modeling. Recently, deep learning has been successfully applied in solving salt segmentation problems. However, most of the studies focus on supervised salt segmentation and require numerous accurately labeled data, which is usually laborious and time-consuming to collect, especially for the geophysics community. In this paper, we propose a semi-supervised framework for salt segmentation, which requires only a small amount of labeled data. In our method, adopting the mean teacher method, we train two models sharing the same network architecture. The student model is optimized using a combination of supervised loss and unsupervised consistency loss, whereas the teacher model is the exponential moving average (EMA) of the student model. We introduce the unsupervised consistency loss to better extract information from unlabeled data by constraining the network to give consistent predictions for the input data and its perturbed version. We train and test our novel semi-supervised method on both synthetic and real datasets. Results demonstrate that our proposed semi-supervised salt segmentation method outperforms the supervised baseline when there is a lack of labeled training data.


Author(s):  
Qindong Sun ◽  
Xingyu Feng ◽  
Shanshan Zhao ◽  
Han Cao ◽  
Shancang Li ◽  
...  

AbstractCustomer preferences analysis and modelling using deep learning in edge computing environment are critical to enhance customer relationship management that focus on a dynamically changing market place. Existing forecasting methods work well with often seen and linear demand patterns but become less accurate with intermittent demands in the catering industry. In this paper, we introduce a throughput deep learning model for both short-term and long-term demands forecasting aimed at allowing catering businesses to be highly efficient and avoid wastage. Moreover, detailed data collected from a business online booking system in the past three years have been used to train and verify the proposed model. Meanwhile, we carefully analyzed the seasonal conditions as well as past local or national events (event analysis) that could have had critical impact on the sales. The results are compared with the best performing forecast methods Xgboost and autoregressive moving average model (ARMA), and they suggest that the proposed method significantly improves demand forecasting accuracy (up to 80%) for dishes demand along with reduction in associated costs and labor allocation.


2022 ◽  
Vol 10 (4) ◽  
pp. 595-604
Author(s):  
Endah Fauziyah ◽  
Dwi Ispriyanti ◽  
Tarno Tarno

The Composite Stock Price Index (IHSG) is a value that describes the combined performance of all shares listed on the Indonesia Stock Exchange. JCI serves as a benchmark for investors in investing. The method used to predict future conditions based on past data is forecasting . Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) is amodel time series that can be used for forecasting. Financial data has high volatility which causes the variance of the residual model which is not constant (heteroscedasticity). ARCH / GARCH model is used to solve the heteroscedasticity problem in the model. If the data is heteroscedastic and asymmetric, then the model can be used Threshold Autoregressive Conditional Heteroskedasticity (TARCH). The data used are the Composite Stock Price Index (IHSG) for the January 2000 - April 2020 period and the dollar exchange rate data for the January 2000 - April 2020 period asvariables independent from the ARIMAX model. The best model used to predict the JCI from the results of this study is the ARIMAX (1,1,0) -TARCH (1,2) model with an AIC value of -0.819074. 


Sign in / Sign up

Export Citation Format

Share Document