Classification of motor imagery tasks for electrocorticogram based brain-computer interface

2014 ◽  
Vol 4 (2) ◽  
pp. 149-157 ◽  
Author(s):  
Fangzhou Xu ◽  
Weidong Zhou ◽  
Yilin Zhen ◽  
Qi Yuan
2013 ◽  
Vol 133 (3) ◽  
pp. 635-641
Author(s):  
Genzo Naito ◽  
Lui Yoshida ◽  
Takashi Numata ◽  
Yutaro Ogawa ◽  
Kiyoshi Kotani ◽  
...  

Author(s):  
Subrota Mazumdar ◽  
Rohit Chaudhary ◽  
Suruchi Suruchi ◽  
Suman Mohanty ◽  
Divya Kumari ◽  
...  

In this chapter, a nearest neighbor (k-NN)-based method for efficient classification of motor imagery using EEG for brain-computer interfacing (BCI) applications has been proposed. Electroencephalogram (EEG) signals are obtained from multiple channels from brain. These EEG signals are taken as input features and given to the k-NN-based classifier to classify motor imagery. More specifically, the chapter gives an outline of the Berlin brain-computer interface that can be operated with minimal subject change. All the design and simulation works are carried out with MATLAB software. k-NN-based classifier is trained with data from continuous signals of EEG channels. After the network is trained, it is tested with various test cases. Performance of the network is checked in terms of percentage accuracy, which is found to be 99.25%. The result suggested that the proposed method is accurate for BCI applications.


Sign in / Sign up

Export Citation Format

Share Document