Global Optimization from Concave Minimization to Concave Mixed Variational Inequality

2020 ◽  
Vol 45 (2) ◽  
pp. 449-462
Author(s):  
Le Dung Muu ◽  
Nguyen Van Quy
2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Guo-ji Tang ◽  
Xing Wang

An interior projected-like subgradient method for mixed variational inequalities is proposed in finite dimensional spaces, which is based on using non-Euclidean projection-like operator. Under suitable assumptions, we prove that the sequence generated by the proposed method converges to a solution of the mixed variational inequality. Moreover, we give the convergence estimate of the method. The results presented in this paper generalize some recent results given in the literatures.


Author(s):  
Yinfeng Zhang ◽  
Guolin Yu

In this paper, we investigate error bounds of an inverse mixed quasi variational inequality problem in Hilbert spaces. Under the assumptions of strong monotonicity of function couple, we obtain some results related to error bounds using generalized residual gap functions. Each presented error bound is an effective estimation of the distance between a feasible solution and the exact solution. Because the inverse mixed quasi-variational inequality covers several kinds of variational inequalities, such as quasi-variational inequality, inverse mixed variational inequality and inverse quasi-variational inequality, the results obtained in this paper can be viewed as an extension of the corresponding results in the related literature.


2010 ◽  
Vol 20-23 ◽  
pp. 76-81 ◽  
Author(s):  
Hai Lian Gui ◽  
Qing Xue Huang

Based on fast multipole boundary element method (FM-BEM) and mixed variational inequality, a new numerical method named mixed fast multipole boundary element method (MFM-BEM) was presented in this paper for solving three-dimensional elastic-plastic contact problems. Mixed boundary integral equation (MBIE) was the foundation of MFM-BEM and obtained by mixed variational inequality. In order to adapt the requirement of fast multipole method (FMM), Taylor series expansion was used in discrete MBIE. In MFM-BEM the calculation time was significant decreased, the calculation accuracy and continuity was also improved. These merits of MFM-BEM were demonstrated in numerical examples. MFM-BEM has broad application prospects and will take an important role in solving large-scale engineering problems.


Sign in / Sign up

Export Citation Format

Share Document