A gradient-based polynomial chaos approach for risk and reliability-based design optimization

Author(s):  
A. J. Torii ◽  
R. H. Lopez ◽  
L. F. F. Miguel
2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Yao Wang ◽  
Shengkui Zeng ◽  
Jianbin Guo

Time-dependent reliability-based design optimization (RBDO) has been acknowledged as an advance optimization methodology since it accounts for time-varying stochastic nature of systems. This paper proposes a time-dependent RBDO method considering both of the time-dependent kinematic reliability and the time-dependent structural reliability as constrains. Polynomial chaos combined with the moving least squares (PCMLS) is presented as a nonintrusive time-dependent surrogate model to conduct uncertainty quantification. Wear is considered to be a critical failure that deteriorates the kinematic reliability and the structural reliability through the changing kinematics. According to Archard’s wear law, a multidiscipline reliability model including the kinematics model and the structural finite element (FE) model is constructed to generate the stochastic processes of system responses. These disciplines are closely coupled and uncertainty impacts are cross-propagated to account for the correlationship between the wear process and loads. The new method is applied to an airborne retractable mechanism. The optimization goal is to minimize the mean and the variance of the total weight under both of the time-dependent and the time-independent reliability constraints.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Yutian Wang ◽  
Peng Hao ◽  
Zhendong Guo ◽  
Dachuan Liu ◽  
Qiang Gao

Abstract The expensive computational cost is always a major concern for reliability-based design optimization (RBDO) of complex problems. The performance of RBDO can be lowered by the inaccuracy of reliability analysis (RA) which is caused by multiple local optimums and multiple design points in highly non-linear space. In order to reduce the computational burden and guarantee the accuracy of RA (and thus to improve the RBDO performance), a global RBDO algorithm by adopting an improved constraint boundary sampling (GRBDO-ICBS) method is proposed. Specifically, the GRBDO-ICBS method first narrows the concerned search region by using a Kriging-based global search. The accuracies of the design points are verified by the expected risk function (ERF), and the corresponding inaccurate design points are added into training samples to update Kriging. Then a multi-start gradient-based sequential RBDO is carried out, which tries to find out all multiple design points in the concerned search region. The performance of GRBDO-ICBS is demonstrated by four examples. All results have shown that the proposed method can achieve similar accuracy as Monte Carlo simulation (MCS)-based RBDO but with a much lower computational cost.


2012 ◽  
Vol 138 (1) ◽  
pp. 60-70 ◽  
Author(s):  
H. A. Jensen ◽  
D. S. Kusanovic ◽  
M. A. Valdebenito ◽  
G. I. Schuëller

2019 ◽  
Author(s):  
Lars Einar S. Stieng ◽  
Michael Muskulus

Abstract. The need for cost effective support structure designs for offshore wind turbines has led to continued interest in the development of design optimization methods. So far, almost no studies have considered the effect of uncertainty, and hence probabilistic constraints, on the support structure design optimization problem. In this work, we present a general methodology that implements recent developments in gradient-based design optimization, in particular the use of analytical gradients, within the context of reliability-based design optimization methods. By an assumed factorization of the uncertain response into a design-independent, probabilistic part and a design-dependent, but completely deterministic part, it is possible to computationally decouple the reliability analysis from the design optimization. Furthermore, this decoupling makes no further assumption about the functional nature of the stochastic response, meaning that high fidelity surrogate modeling through Gaussian process regression of the probabilistic part can be performed while using analytical gradient-based methods for the design optimization. We apply this methodology to several different cases based around a uniform cantilever beam and the OC3 Monopile and different loading and constraints scenarios. The results demonstrate the viability of the approach in terms of obtaining reliable, optimal support structure designs and furthermore show that in practice only a limited amount of additional computational effort is required compared to deterministic design optimization. While there are some limitations in the applied cases, and some further refinement might be necessary for applications to high fidelity design scenarios, the demonstrated capabilities of the proposed methodology show that efficient reliability-based optimization for offshore wind turbine support structures is feasible.


Sign in / Sign up

Export Citation Format

Share Document