Investigation of the thermal stiffness and thermal tooth profile modification of spur gears

Author(s):  
Biao Luo ◽  
Wei Li ◽  
Chunming Fu ◽  
Linsheng Li ◽  
Xinxin Zhang
2012 ◽  
Vol 499 ◽  
pp. 138-142
Author(s):  
Zhe Yuan ◽  
Yu Guo

The tooth profile modification can generally choose straight line modification, parabolic modification and arc modification. In order to accurately determine the tooth profile modification curves, basing on analysis of the vibration that effected by transmission error, a pair of gears meshing process is simulated with FEM approach. Aiming at reducing the fluctuation of transmission error, the transmission error curves of straight line modification, parabolic modification and arc modification with the same modification parameters are plotted, and the best modifications curve is obtained. The research shows that the approach is accurate to choose the best modification curve, and reduce the fluctuation of transmission error greatly. The approach illustrated in this paper provides a new way for designing the noiseless gears.


Author(s):  
Jiande Wang ◽  
Ian Howard

Compared to the commonly used Low Contact Ratio Spur Gears (LCRG), High Contact Ratio Spur Gears (HCRG) can provide higher power to weight ratio, and can also achieve smoother running with lower Transmission Error (TE) variations. To achieve the benefits of High Contact Ratio Spur Gears (HCRG), its tolerance to manufacturing errors and elastic deformation has to be increased. After various attempts by previous researchers, double scope tooth profile modifications have been seen as being of major interest showing great potential for improvements in most applications. Research presented in this paper concentrated on providing further proofs and verifications on the topic by using modern numerical methods and comprehensive analysis. Additionally, a general Bulk Tooth Rotation (BTR) type tooth profile modification is introduced and applied to the High Contact Ratio Spur Gears (HCRG) in order to improve the tooth profile design and some common higher order analysis is shown allowing further comments to be made.


Sign in / Sign up

Export Citation Format

Share Document