higher power
Recently Published Documents


TOTAL DOCUMENTS

935
(FIVE YEARS 305)

H-INDEX

30
(FIVE YEARS 6)

Religions ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 72
Author(s):  
Marcin Wnuk

The aim of the study was to assess the psychometric properties of the employee spirituality scale. The employee spirituality scale was found to be a reliable measure with good internal consistency. The internal consistency of this instrument, measured with Cronbach’s α coefficient, was 0.94. Factor analysis confirmed the two-dimensional structure of this measure, the dimensions being: relationship to a Higher Power (God) and attitude towards workmates and employer. A statistically significant positive correlation was found between employee spirituality and job satisfaction, as well as age, and a negative correlation was found with their intent to leave their organization. According to expectation, the relationship to a Higher Power (God) as a religious dimension of employee spirituality was strong, positively related to religious practices and attitude towards workmates and employer, and a secular dimension of employee spirituality did not correlate with religious measures. Gender did not differentiate participants in terms of employee spirituality. The presented results provide evidence that the employee spirituality scale has good psychometric properties and is therefore recommended for use by researchers studying employee spirituality in Polish organizations.


Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 379
Author(s):  
Ignacio T. Vargas ◽  
Natalia Tapia ◽  
John M. Regan

During the last decade, bioprospecting for electrochemically active bacteria has included the search for new sources of inoculum for microbial fuel cells (MFCs). However, concerning power and current production, a Geobacter-dominated mixed microbial community derived from a wastewater inoculum remains the standard. On the other hand, cathode performance is still one of the main limitations for MFCs, and the enrichment of a beneficial cathodic biofilm emerges as an alternative to increase its performance. Glucose-fed air-cathode reactors inoculated with a rumen-fluid enrichment and wastewater showed higher power densities and soluble chemical oxygen demand (sCOD) removal (Pmax = 824.5 mWm−2; ΔsCOD = 96.1%) than reactors inoculated only with wastewater (Pmax = 634.1 mWm−2; ΔsCOD = 91.7%). Identical anode but different cathode potentials suggest that differences in performance were due to the cathode. Pyrosequencing analysis showed no significant differences between the anodic community structures derived from both inocula but increased relative abundances of Azoarcus and Victivallis species in the cathodic rumen enrichment. Results suggest that this rarely used inoculum for single-chamber MFCs contributed to cathodic biofilm improvements with no anodic biofilm effects.


Author(s):  
Da Liu ◽  
Wen-Kai Fang ◽  
Jiangtao Li ◽  
Liling Zhang ◽  
Mei Yan ◽  
...  

In general, more exoelectrogens’ enrichment implies higher power density. However, due to the low electrocatalytic activity of the anode, it limits the performance of microbial fuel cell. Here, based on...


2022 ◽  
pp. 171-188

This narrative illustrates the connections between spirituality, writing, and health. It does not promote a specific religion but demonstrates strength people gain from believing in a higher power. Prayers with hospital patients and the search for connections more than coincidences illustrate how people find and maintain hope and faith when presented with tragic events such as the recent pandemic. Each reader may find encouragement while reflecting on and following an individual spiritual path.


2021 ◽  
Vol 27 ◽  
pp. 213-245
Author(s):  
Dorota Ucherek
Keyword(s):  

The aim of this article is to find the sources of images of the Inner Sea Lands gods in Anna Brzezińska’s “Saga of Twardokęsek the Brigand”. The author presents the most important features of these characters, their most recognizable actions and attributes, comparing them with possible prototypes derived from Greek, Roman, Scandinavian, Slavic, and Hindu mythology, as well as Christianity. She points out that the gods in Brzezińska’s saga, although worshipped, are not omnipotent and do not possess full creative powers. They turn out to be only slightly more powerful than their off spring, the fruit of their relationships with humans — witches. Shaping human fates, they are only able to recreate ancient patterns over and over again and are subject to a higher power (similarly to how the Greek gods were subject to Fatum). In their images, we can also find traces of inspiration from the classic mythopoetic fantasy, especially Ursula K. Le Guin’s series about the Earthsea. Thus, these images can be seen as a magical-religious mosaic, which evokes associations with the considerations of classical anthropology on the relations between magic and religion. The author also puts forward the hypothesis about treating these images as a metaphor for the process of creating literature, especially in its original, oral form.


2021 ◽  
Author(s):  
Jonas Kristiansen Nøland ◽  
Christian Hartmann ◽  
Runar Mellerud

Hydrogen-powered airplanes have recently attracted a revitalized push in the aviation sector to combat CO2 emissions. However, to also reduce, or even eliminate, non-CO2 emissions and contrails, the combination of hydrogen with all-electric solutions is undoubtedly the best option to move toward the ambitious goal of climate-neutral aviation. Another important design choice is to store hydrogen cryogenically in its liquid form (LH2) to reduce space occupation compared to storage as compressed gas. However, the LH2 fuels cannot be utilized directly in fuel cells. It needs to be brought from liquid to a gas at about 350 K, where large amounts of heat must be added. Thus, a synergy can be made from this otherwise wasted cryogenic refrigeration power where superconducting machines (SCMs) and cold power electronics (CPE) are low-hanging fruits that could lead to radical space and weight reductions onboard the aircraft. These opportunities can be realized without having to pay the price, nor the volume occupation and mass needed for the cooling ability usually needed to achieve these extraordinary performances. In fact, this ground-breaking synergy makes cryogenic energy conversion relevant in a whole new way for aviation. The SCMs’ more than five times higher power densities than their conventional counterparts are exceptionally significant. This article introduces the recently proposed cryo-electric drivetrain initiatives and explores the opportunities of using direct hydrogen cooling as a potential heating solution to enhance the overall performance and scalability of zero-emission propulsion systems in future regional aircraft.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 82
Author(s):  
Se-Hoon Kim ◽  
Chang-Jin Lee ◽  
Wan-Il Kim ◽  
Kwang-Cheol Ko

The operation features of the coaxial virtual cathode oscillator emitting electrons in the outer radial direction were investigated through simulations and experiments. A coaxial vircator was compared with an axial vircator when the anode to cathode distance of both vircators was 6 mm. The proposed coaxial vircator was operated when the anode to cathode distance was 5 mm, 6 mm, and 7 mm. The peak power and frequency of the microwave generated from the proposed coaxial vircator when the anode to cathode distance was 6 mm were 20.18 MW and 6.17 GHz, respectively. The simulations and experiments show that the proposed coaxial vircator generates 80% more microwave power than the axial vircator with the same anode to cathode distance. According to the simulations and experiments, the proposed coaxial vircator tends to generate a higher power average when the anode to cathode distance was larger than 5 mm. The frequency of the proposed coaxial vircator when the anode to cathode distance was 5 mm and 7 mm was approximately 8 GHz and 5 GHz, respectively. The geometric factor of the proposed coaxial vircator was considered to be the reason for the greater microwave power generation than the axial vircator. The frequency of the proposed coaxial vircator decreases inversely proportional with the anode to cathode distance as observed in the axial and basic coaxial vircators.


2021 ◽  
Author(s):  
Jonas Kristiansen Nøland ◽  
Christian Hartmann ◽  
Runar Mellerud

Hydrogen-powered airplanes have recently attracted a revitalized push in the aviation sector to combat CO2 emissions. However, to also reduce, or even eliminate, non-CO2 emissions and contrails, the combination of hydrogen with all-electric solutions is undoubtedly the best option to move toward the ambitious goal of climate-neutral aviation. Another important design choice is to store hydrogen cryogenically in its liquid form (LH2) to reduce space occupation compared to storage as compressed gas. However, the LH2 fuels cannot be utilized directly in fuel cells. It needs to be brought from liquid to a gas at about 350 K, where large amounts of heat must be added. Thus, a synergy can be made from this otherwise wasted cryogenic refrigeration power where superconducting machines (SCMs) and cold power electronics (CPE) are low-hanging fruits that could lead to radical space and weight reductions onboard the aircraft. These opportunities can be realized without having to pay the price, nor the volume occupation and mass needed for the cooling ability usually needed to achieve these extraordinary performances. In fact, this ground-breaking synergy makes cryogenic energy conversion relevant in a whole new way for aviation. The SCMs’ more than five times higher power densities than their conventional counterparts are exceptionally significant. This article introduces the recently proposed cryo-electric drivetrain initiatives and explores the opportunities of using direct hydrogen cooling as a potential heating solution to enhance the overall performance and scalability of zero-emission propulsion systems in future regional aircraft.


Author(s):  
Seifollah Jalili ◽  
Atena Pakzadiyan

Abstract The integration of dissimilar 2D materials is important for nanoelectronic and thermoelectric applications. Among different polymorphs and different bond geometries, borophene and graphdiyne are two promising candidates for these applications. In the present paper, we have studied hetero-bilayers comprising graphdiyne-borophene (GDY-BS) sheets. Three structural models, namely S0, S1 and S2 have been used for borophene sheets. The optimum interlayer distance for the hetero-bilayers was obtained through binding energy calculations. Then, the structure and electronic properties of the monolayers and hetero-bilayers were individually examined and compared. Graphdiyne monolayer was shown to be a semiconductor with a band gap of 0.43 eV, while the borophene monolayers, as well as all studied hetero-bilayers showed metallic behavior. The thermoelectric properties of borophene and graphdiyne monolayers and the graphdiyne-borophene bilayers were calculated on the basis of the semi-classical Boltzmann theory. The results showed signs of improvement in the conductivity behavior of the hetero-bilayers. Furthermore, considering the increase in Seebeck coefficient and the conductivity for all the structures after calculating figure of merit and power factor, a higher power factor and more energy generation were observed for bilayers. These results show that the GDY-BS hetero-bilayers can positively affect the performance of thermoelectric devices,


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8407
Author(s):  
Yibo Li ◽  
Jiacai Huang ◽  
Fangzheng Gao ◽  
Zhiying Zhu ◽  
Yufei Han ◽  
...  

The analytical model of a permanent magnet eddy current coupler (PMECC) is mainly used for evaluation of its characteristics and the initial optimization of design. Based on the equivalent magnetic circuit method, this paper carries out analytical modeling for four typical PMECCs composed of surface-mounted and interior permanent magnet, slotted and non-slotted conductor rotors, which provides a theoretical basis for the subsequent research in this paper. The basic electromagnetic characteristics of the PMECCs are investigated by the established analytical model. Simultaneously, the analytical results about permeance, flux density, torque and power are verified by FEA simulation. The analysis results show that the slotted CR will obtain a much higher power density, and the iron loss mainly exists in the CRs. In addition, the analytical and FEA results agree well, which proves the reliability of the proposed, nearly unified analytical model.


Sign in / Sign up

Export Citation Format

Share Document