transmission error
Recently Published Documents


TOTAL DOCUMENTS

897
(FIVE YEARS 182)

H-INDEX

30
(FIVE YEARS 7)

2022 ◽  
Vol 165 ◽  
pp. 108324
Author(s):  
Runyu Lu ◽  
Md Rifat Shahriar ◽  
Pietro Borghesani ◽  
Robert B. Randall ◽  
Zhongxiao Peng

2022 ◽  
Vol 12 (2) ◽  
pp. 822
Author(s):  
Qin Wang ◽  
Jinke Jiang ◽  
Hua Chen ◽  
Junwei Tian ◽  
Yu Su ◽  
...  

An approach of ease-off flank modification for hypoid gears was proposed to improve the meshing performance of automobile drive axle. Firstly, a conjugate pinion matching with gear globally was developed based on gear meshing theory. Secondly, a modified pinion was represented by a sum of two vector functions determining the conjugate pinion and the normal ease-off deviations expressed by both predesigned transmission error function and tooth profile modification curves to change the initial contact clearance of the tooth. Thirdly, the best ease-off deviations were determined by optimizing the minimum amplitude of loaded transmission error (ALTE) based on tooth contact analysis (TCA) and loaded tooth contact analysis (LTCA). Finally, the results show that effective contact ratios (εe) are established by clearances both teeth space and of contact elliptical, and greatly affect ALTE. The εe is a variable value with increasing loads for the tooth with modification. ALTE decreases with increasing εe. After εe reaches the maximum, ALTE increases with increasing loads. The mismatch of the best ease-off tooth is minimal, which contributes to effective reduction in ALTE, thus significantly improving drive performance.


2022 ◽  
Vol 167 ◽  
pp. 104499
Author(s):  
Emna Ben Younes ◽  
Christophe Changenet ◽  
Jérôme Bruyère ◽  
Emmanuel Rigaud ◽  
Joël Perret-Liaudet

2022 ◽  
Vol 14 (1) ◽  
pp. 168781402110729
Author(s):  
Wanhua Zhao ◽  
Zhuang Liu ◽  
Yong Yang ◽  
Zheng Zou ◽  
Ruizhi Shu ◽  
...  

By considering the uncertainness of initial measuring position of encoders and signal sidebands caused by the fault gear pair, this paper presented a new comprehensive harmonic analysis method for the transmission error of gear hobbing machine. Based on that, a test platform was established, in which two circle grating encoders were connected to the hob spindle and workpiece spindle respectively. With the help of this new harmonic analysis method as well as the self-developed test platform, a new improved transmission error fault diagnosis method was developed for the gear hobbing machines. To verify its accountability, a case study was conducted on a YS-type gear hobbing machine. According to the spectrum amplitude comparison and the analysis of harmonic frequency distribution, the fault transmission gear pair was successfully located. This improved transmission error source tracing method was very helpful for quantifying both the manufacturing qualities and assembly qualities of parts and locating potential error source for new gear hobbing machines.


Author(s):  
Hao Dong ◽  
Yue Bi ◽  
bo Wen ◽  
Zhen-bin Liu ◽  
Li-bang Wang

The double-helical gear system was widely used in ship transmission. In order to study the influence of backlash on the nonlinear frequency response characteristics of marine double-helical gear system, according to the structural characteristics of double-helical gear transmission, considering the time-varying meshing stiffness, backlash, damping, comprehensive transmission error, external load excitation, and other factors, a three-dimensional bending-torsional-axial-pendular coupling nonlinear dynamic modeling and dynamic differential equation of 24-DOF double-helical gear transmission system were established. The Runge–Kutta numerical method was used to analyze the influence of backlash, time-varying meshing stiffness, damping, error and external load excitation on the amplitude frequency characteristics. The results show that the backlash can cause the runout of the double-helical gear system, and the system has first harmonic and second harmonic response. With the increase of backlash, the amplitude of the system increases and the jumping phenomenon remains unchanged. The amplitude frequency response of the system is stimulated by time-varying meshing stiffness and comprehensive transmission error, and restrained by damping and external load excitation. The vibration displacement amplitude of the system increases with the increase of vibration displacement and has little effect on the state change of the system. The vibration test of double-helical gear is carried out. The frequency response components obtained by numerical simulation are basically consistent with the experimental results, which proves the correctness of the theoretical calculation. It provides a technical basis for the study of vibration and noise reduction performance of double-helical gear.


2021 ◽  
Vol 11 (23) ◽  
pp. 11438
Author(s):  
Xiurong Zhang ◽  
Xinwei Yue ◽  
Shaoli Kang

Low latency and a massive connection have become the requirements of energy internet wireless communication. Effective capacity analysis of non-orthogonal multiple access (NOMA) networks with short packets is of vital importance in energy internet communication planning and design. Low-latency communications are one of the main application scenarios in next-generation wireless networks. This paper focuses on the effective capacity of NOMA networks, where the finite blocklength, delay exponent, and transmission error probability are taken into account. New exact and asymptotic expressions of effective capacities are derived for arbitrarily ordered users with a finite blocklength. Based on the analytical results, the high Signal-to-Noise Ratio slopes of effective capacity in NOMA networks are carefully attained. The numerical results validate that (a) non-orthogonal users are capable of obtaining a larger effective capacity when the blocklength decreases, and that (b), as the value of the error probability and delay exponent increases, the effective capacity of non-orthogonal users worsens.


2021 ◽  
Vol 166 ◽  
pp. 104476
Author(s):  
Chanho Choi ◽  
Hyoungjong Ahn ◽  
Young-jun Park ◽  
Geun-ho Lee ◽  
Su-chul Kim

2021 ◽  
Vol 166 ◽  
pp. 104471
Author(s):  
Fabio Bruzzone ◽  
Tommaso Maggi ◽  
Claudio Marcellini ◽  
Carlo Rosso

Sign in / Sign up

Export Citation Format

Share Document