Simple cyclic covers of the plane and the Seshadri constants of some general hypersurfaces in weighted projective space
AbstractLet $$X \subset {\mathbb P}(1,1,1,m)$$ X ⊂ P ( 1 , 1 , 1 , m ) be a general hypersurface of degree md for some for $$d\ge 2$$ d ≥ 2 and $$m\ge 3$$ m ≥ 3 . We prove that the Seshadri constant $$\varepsilon ( {\mathcal O}_X(1), x)$$ ε ( O X ( 1 ) , x ) at a general point $$x\in X$$ x ∈ X lies in the interval $$\left[ \sqrt{d}- \frac{d}{m}, \sqrt{d}\right] $$ d - d m , d and thus approaches the possibly irrational number $$\sqrt{d}$$ d as m grows. The main step is a detailed study of the case where X is a simple cyclic cover of the plane.