scholarly journals Multi-objective System Design Optimization via PPA and a Fuzzy Method

Author(s):  
Mohamed Arezki Mellal ◽  
Abdellah Salhi

AbstractSystem design deals with various challenges of targets and resources, such as reliability, availability, maintainability, cost, weight, volume, and configuration. This paper deals with the multi-objective system availability and cost optimization of parallel–series systems by resorting to the multi-objective strawberry algorithm also known as the Plant Propagation Algorithm or PPA and a fuzzy method. It is the first implementation of this optimization algorithm in the literature for this kind of problem to generate the Pareto Front. The fuzzy method allows helping the decision maker to select the best compromise solution. A numerical case study involving 10 subsystems highlights the applicability of the proposed approach.

Author(s):  
Mohamed Arezki Mellal ◽  
Enrico Zio

This article presents an algorithm for optimal redundancy and repair team allocation with respect to minimum system cost and a system availability constraint. Four scenarios are considered for the failures occurring in the subsystems of the system: independence, linear dependence, weak dependence, and strong dependence. An adaptive cuckoo optimization algorithm is developed for solving the nonlinear integer optimization problem of allocation. A series–parallel system with six subsystems is considered as a case study for demonstration purposes. The results obtained highlight the good performance of the developed algorithm.


2013 ◽  
Vol 1 (1) ◽  
pp. 158-178
Author(s):  
Urcun John Tanik

Cyberphysical system design automation utilizing knowledge based engineering techniques with globally networked knowledge bases can tremendously improve the design process for emerging systems. Our goal is to develop a comprehensive architectural framework to improve the design process for cyberphysical systems (CPS) and implement a case study with Axiomatic Design Solutions Inc. to develop next generation toolsets utilizing knowledge-based engineering (KBE) systems adapted to multiple domains in the field of CPS design automation. The Cyberphysical System Design Automation Framework (CPSDAF) will be based on advances in CPS design theory based on current research and knowledge collected from global sources automatically via Semantic Web Services. A case study utilizing STEM students is discussed.


Sign in / Sign up

Export Citation Format

Share Document