Transient Analysis of $$M^{[X_{1}]},M^{[X_{2}]}/G_{1},G_{2}/1$$ M [ X 1 ] , M [ X 2 ] / G 1 , G 2 / 1 Retrial Queueing System with Priority Services, Working Vacations and Vacation Interruption, Emergency Vacation, Negative Arrival and Delayed Repair

Author(s):  
G. Ayyappan ◽  
P. Thamizhselvi
2018 ◽  
Vol 7 (4.10) ◽  
pp. 758
Author(s):  
P. Rajadurai ◽  
R. Santhoshi ◽  
G. Pavithra ◽  
S. Usharani ◽  
S. B. Shylaja

A multi phase retrial queue with optional re-service and multiple working vacations is considered. The Probability Generating Function (PGF) of number of customers in the system is obtained by supplementary variable technique. Various system performance measures are discussed. 


Author(s):  
Govindhan Ayyappan ◽  
Udayageetha J

This paper considers  M[X1],M[X2]/G1,G2/1 general retrial queueing system with priority services. Two types of customers from different classes arrive at the system in different independent compound Poisson processes. The server follows the pre-emptive priority rule subject to working breakdown, startup/closedown time and Bernoulli vacation with general (arbitrary) vacation periods. After completing the service, if there are no priority customers present in the system the server may go for a vacation or close down the system. On completion of the close down, the server needs some time to set up the system. The priority customers who find the server busy are queued in the system. A low-priority customer who find the server busy are routed to a retrial (orbit) queue that attempts to get the service. The system may breakdown at any point of time when it is in operation. However, when the system fails, instead of stopping service completely, the service is continued only to the high priority customers at a slower rate. We consider balking to occur to the low priority customer while the server is busy or idle, and reneging to occur at the high priority customers during server’s vacation, start up/close down time. Using the supplementary variable technique, we derive the joint distribution of the server state and the number of customers in the system. Finally, some performance measures and numerical examples are presented.


2018 ◽  
Vol 52 (1) ◽  
pp. 35-54 ◽  
Author(s):  
P. Rajadurai

This paper deals with the new type of retrial queueing system with working vacations and working breakdowns. The system may become defective by disasters at any point of time when the regular busy server is in operation. The occurrence of disasters forces all customers to leave the system and causes the main server to fail. At a failure instant, the main server is sent to the repair and the repair period immediately begins. As soon as the orbit becomes empty at regular service completion instant or disaster occurs in the regular busy server, the server goes for a working vacation and working breakdown (called lower speed service period). During this period, the server works at a lower service rate to arriving customers. Using the supplementary variable technique, we analyze the steady state probability generating function of system size. Some important system performance measures are obtained. Finally, some numerical examples and cost optimization analysis are presented.


2014 ◽  
Vol 31 (02) ◽  
pp. 1440002 ◽  
Author(s):  
K. AVRACHENKOV ◽  
E. MOROZOV ◽  
R. NEKRASOVA ◽  
B. STEYAERT

In this paper, we study a new retrial queueing system with N classes of customers, where a class-i blocked customer joins orbit i. Orbit i works like a single-server queueing system with (exponential) constant retrial time (with rate [Formula: see text]) regardless of the orbit size. Such a system is motivated by multiple telecommunication applications, for instance wireless multi-access systems, and transmission control protocols. First, we present a review of some corresponding recent results related to a single-orbit retrial system. Then, using a regenerative approach, we deduce a set of necessary stability conditions for such a system. We will show that these conditions have a very clear probabilistic interpretation. We also performed a number of simulations to show that the obtained conditions delimit the stability domain with a remarkable accuracy, being in fact the (necessary and sufficient) stability criteria, at the very least for the 2-orbit M/M/1/1-type and M/Pareto/1/1-type retrial systems that we focus on.


Sign in / Sign up

Export Citation Format

Share Document