Behaviour of trace elements during upper mantle metasomatism: Evidences from the Lherz massif

1988 ◽  
Vol 70 (1-2) ◽  
pp. 152 ◽  
Author(s):  
J.L. Bodinier ◽  
C. Dupuy ◽  
J. Vernieres
2020 ◽  
Vol 105 (9) ◽  
pp. 1326-1341
Author(s):  
Wenting Tang ◽  
Hejiu Hui ◽  
Dmitri A. Ionov ◽  
Wei Chen ◽  
Lisha Zhang ◽  
...  

Abstract Hydrogen concentrations in minerals of peridotite xenoliths in alkali basaltic rocks from Quaternary volcanoes in northwest Spitsbergen were measured using polarized Fourier transform infrared spectroscopy (FTIR) to trace the effects of geologic processes on hydrogen distribution in the continental lithospheric mantle. The mineral grains show hydrogen profiles with lower concentrations at rims suggesting diffusive hydrogen loss during the entrapment and transport of the xenoliths in magma. However, hydrogen concentrations in the centers of the grains are uniform and appear to represent hydrogen abundances in the Spitsbergen upper mantle. The olivine, orthopyroxene, and clinopyroxene contain 1–10, 130–290, and 350–560 ppm H2O, respectively. Hydrogen abundances away from metasomatic melt conduits recorded by Type 1 xenoliths are correlated with the concentrations of incompatible trace elements, indicating that hydrogen distribution is related to mantle metasomatism. By contrast, hydrogen near the melt conduits, recorded by Type 2 xenoliths, shows no regular correlations with incompatible trace elements (except Nb in clinopyroxene) and may be affected by fractional crystallization of amphibole in the conduits. Hydrogen contents decrease away from the melt conduits and are controlled by the interaction between the depleted host mantle and percolating metasomatic melts. Therefore, the metasomatic melt could have variably hydrated the Spitsbergen upper mantle via different processes. The H2O/Ce ratios of the melt in equilibrium with clinopyroxene near the metasomatic melt conduits range from 93 to 218, i.e., within the oceanic island basalt (OIB) range. This is consistent with that the metasomatic melt could have been derived from OIB-type sources evidenced by the Sr-Nd isotope compositions of the xenoliths.


1981 ◽  
Vol 44 (335) ◽  
pp. 315-323 ◽  
Author(s):  
F. E. Lloyd

AbstractClinopyroxenes are dominant in highly potassic, silica undersaturated mafic volcanics occurring on the western rim of the uplifted, rifted East African craton. A kimbcrlite style of eruption provides nodules of alkali clinopyroxenite (clinopyroxene + titaniferous phlogopite+titanomagnetite, apatite, sphene, and rare corroded olivine) which have similar bulk chemistry to the feldspathoid-bearing lavas. Many nodules display metasomatic textures supporting a formation from the alteration of pre-existing material; clinopyroxene growth is characterized by complex, non-oscillatory colour zoning. Comparison of natural clinopyroxene chemistry with published data for elinopyroxenes crystallized from synthetic potassium-rich mafic material, suggests that a significant proportion of the nodules crystallized at upper-mantle pressures. Neither garnet- nor orthopyroxene-bearing nodules have ever been recorded from south-west Uganda, suggesting that metasomatism of the local mantle has proceeded far enough to obliterate all recognizable remnants of four-phase lherzolite.


Sign in / Sign up

Export Citation Format

Share Document