Mineralogy and Petrology
Latest Publications


TOTAL DOCUMENTS

1780
(FIVE YEARS 122)

H-INDEX

54
(FIVE YEARS 5)

Published By Springer-Verlag

1438-1168, 0930-0708

Author(s):  
Volker Kahlenberg ◽  
Lukas Prosser ◽  
Michael F. Salzmann ◽  
Clivia Hejny

AbstractSr-substitution in the crystal structure of bredigite has been studied in detail. Samples of a hypothetical solid-solution series with nominal composition Ca7-xSrxMg[SiO4]4 (x = 0, 2, …,7) have been prepared from sinter reactions in the temperature range between 1275 and 1325 °C and characterized using powder and single-crystal X-ray diffraction. Synthesis runs between x = 1 and x = 4 resulted in compounds with increasing Sr contents, for which single-crystal diffraction studies revealed the following Sr/(Sr + Ca) atomic ratios: 0.133,0.268, 0.409 and 0.559. They are isostructural to the pure calcium end-member (x = 0) and adopt the orthorhombic space group Pnnm. Evolution of the unit-cell parameters and cell volumes of the solid-solution series are defined by linear or nearly linear trends when plotted against the Sr/(Sr + Ca) atomic ratio. Replacement of calcium with strontium atoms on the different sites shows clear preferences for specific positions. For the experiment with x = 5, formation of bredigite-related single-crystals with Sr/(Sr + Ca) = 0.675 was observed. These samples, however, exhibited a halved c lattice parameter when compared with the corresponding value in the Pnnm structure, pointing to a compositionally induced phase transition somewhere in region between Sr/(Sr + Ca) = 0.559 and 0.675. The crystal structure of this new phase with composition Ca2.32Sr4.82Mg0.86[SiO4]4 was successfully determined in space group Pbam. Basic crystallographic data are as follows: a = 18.869(2) Å, b = 6.9445(8) Å, c = 5.5426(6) Å, V = 726.28(14) Å3, Z = 2. Structure determination was accomplished using charge flipping. Subsequent least-squares refinements resulted in a residual of R(|F|) = 2.70% for 822 independent reflections and 87 parameters. The Pbam- and the Pnnm-structures are in a group-subgroup relationship and topologically related. Both are based on so-called pinwheel-like MSi6O24 clusters consisting of a central magnesium-dominated [MO6]-octahedron as well as six attached [SiO4]-tetrahedra. The clusters are linked into chain-like elements running along [001]. Linkage between the chains is provided by mixed Sr/Ca positions with 6 to 10 oxygen ligands. Differences between the two phases result from changes in Sr-Ca site occupancies in combination with displacements of the atoms and tilts of the tetrahedra. The distortion pattern has been studied using group-theoretical methods including mode analysis. Notably, for the samples with x = 6 and x = 7—the latter corresponding to the hypothetical pure strontium end-member composition—no bredigite-type phases could be identified, indicating that there is an upper limit for the Sr-uptake.


Author(s):  
Nejib Jemmali ◽  
Larbi Rddad ◽  
Marta Sośnicka ◽  
Emna Rahali ◽  
Fouad Souissi ◽  
...  
Keyword(s):  

Author(s):  
Meng Duan ◽  
Yaoling Niu ◽  
Pu Sun ◽  
Shuo Chen ◽  
Juanjuan Kong ◽  
...  

AbstractCalculating the temperatures of magmas from which granitoid rocks solidify is a key task of studying their petrogenesis, but few geothermometers are satisfactory. Zircon saturation thermometry has been the most widely used because it is conceptually simple and practically convenient, and because it is based on experimental calibrations with significant correlation of the calculated zircon saturation temperature (TZr) with zirconium (Zr) content in the granitic melt (i.e., TZr ∝ ZrMELT). However, application of this thermometry to natural rocks can be misleading, resulting in the calculated TZr having no geological significance. This thermometry requires Zr content and a compound bulk compositional parameter M of the melt as input variables. As the Zr and M information of the melt is not available, petrologists simply use bulk-rock Zr content (ZrBULK-ROCK) and M to calculate TZr. In the experimental calibration, TZr shows no correlation with M, thus the calculated TZr is only a function of ZrMELT. Because granitoid rocks represent cumulates or mixtures of melt with crystals before magma solidification and because significant amount Zr in the bulk-rock sample reside in zircon crystals of varying origin (liquidus, captured or inherited crystals) with unknown modal abundance, ZrBULK-ROCK cannot be equated with ZrMELT that is unknown. Hence, the calculated magma temperatures TZr using ZrBULK-ROCK have no significance in both theory and practice. As an alternative, we propose to use the empirical equation $$T_{SiO_{2}}$$ T S i O 2  (°C) = -14.16 × SiO2 + 1723 for granitoid studies, not to rely on exact values for individual samples but focus on the similarities and differences between samples and sample suites for comparison. This simple and robust thermometry is based on experimentally determined phase equilibria with T ∝ 1/SiO2.


Author(s):  
Fabrizio Tursi

AbstractA careful petrologic analysis of mylonites’ mineral assemblages is crucial for a thorough comprehension of the rheologic behaviour of ductile shear zones active during an orogenesis. In this view, understanding the way new minerals form in rocks sheared in a ductile manner and why relict porphyroblasts are preserved in zones where mineral reactions are generally supposed to be deformation-assisted, is essential. To this goal, the role of chemical potential gradients, particularly that of H2O (µH2O), was examined here through phase equilibrium modelling of syn-kinematic mineral assemblages developed in three distinct mylonites from the Calabria polymetamorphic terrane. Results revealed that gradients in chemical potentials have effects on the mineral assemblages of the studied mylonites, and that new syn-kinematic minerals formed in higher-µH2O conditions than the surroundings. In each case study, the banded fabric of the mylonites is related to the fluid availability in the system, with the fluid that was internally generated by the breakdown of OH-bearing minerals. The gradients in µH2O favoured the origin of bands enriched in hydrated minerals alternated with bands where anhydrous minerals were preserved even during exhumation. Thermodynamic modelling highlights that during the prograde stage of metamorphism, high-µH2O was necessary to form new minerals while relict, anhydrous porphyroblasts remained stable in condition of low-µH2O even during exhumation. Hence, the approach used in this contribution is an in-depth investigation of the fluid-present/-deficient conditions that affected mylonites during their activity, and provides a more robust interpretation of their microstructures, finally helping to explain the rheologic behaviour of ductile shear zones.


Author(s):  
Galina D. Volkova ◽  
Anna A. Nosova ◽  
Alexey A. Voznyak ◽  
Liudmila V. Sazonova ◽  
Evgenia V. Yutkina ◽  
...  

Author(s):  
Stefan Höhn ◽  
Hartwig E. Frimmel ◽  
Westley Price

AbstractThe Mesoproterozoic Aggeneys-Gamsberg ore district, South Africa, is one of the world´s largest sulfidic base metal concentrations and well-known as a prime example of Broken Hill-type base metal deposits, traditionally interpreted as metamorphosed SEDEX deposits. Within this district, the Gamsberg deposit stands out for its huge size and strongly Zn-dominated ore ( >14 Mt contained Zn). New electron microprobe analyses and element abundance maps of sulfides and silicates point to fluid-driven sulfidation during retrograde metamorphism. Differences in the chemistry of sulfide inclusions within zoned garnet grains reflect different degrees of interaction of sulfides with high metal/sulfur-ratio with a sulfur-rich metamorphic fluid. Independent evidence of sulfidation during retrograde metamorphism comes from graphic-textured sulfide aggregates that previously have been interpreted as quenched sulfidic melts, replacement of pyrrhotite by pyrite along micro-fractures, and sulfides in phyllic alteration zones. Limited availability of fluid under retrograde conditions caused locally different degrees of segregation of Fe-rich sphalerite into Zn-rich sphalerite and pyrite, and thus considerable heterogeneity in sphalerite chemistry. The invoked sulfur-rich metamorphic fluids would have been able to sulfidize base metal-rich zones in the whole deposit and thus camouflage a potential pre-metamorphic oxidation. These findings support the recently established hypothesis of a pre-Klondikean weathering-induced oxidation event and challenge the traditional explanation of Broken Hill-type deposits as merely metamorphosed SEDEX deposits. Instead, we suggest that the massive sulfide deposits experienced a complex history, starting with initial SEDEX-type mineralization, followed by near-surface oxidation with spatial metal separation, and then sulfidation of this oxidized ore during medium- to high-grade metamorphism.


Author(s):  
Nadezhda V. Shchipalkina ◽  
Nikita V. Chukanov ◽  
Natalia V. Zubkova ◽  
Christof Schäfer ◽  
Igor V. Pekov ◽  
...  

Author(s):  
Kirsten T. Wenzel ◽  
Michael Wiedenbeck ◽  
Jürgen Gose ◽  
Alexander Rocholl ◽  
Esther Schmädicke

AbstractThis study presents new secondary ion mass spectrometry (SIMS) reference materials (RMs) for measuring water contents in nominally anhydrous orthopyroxenes from upper mantle peridotites. The enstatitic reference orthopyroxenes from spinel peridotite xenoliths have Mg#s between 0.83 and 0.86, Al2O3 ranges between 4.02 and 5.56 wt%, and Cr2O3 ranges between 0.21 and 0.69 wt%. Based on Fourier-transform infrared spectroscopy (FTIR) characterizations, the water contents of the eleven reference orthopyroxenes vary from dry to 249 ± 6 µg/g H2O. Using these reference grains, a set of orthopyroxene samples obtained from variably altered abyssal spinel peridotites from the Atlantic and Arctic Ridges as well as from the Izu-Bonin-Mariana forearc region was analyzed by SIMS and FTIR regarding their incorporation of water. The major element composition of the sample orthopyroxenes is typical of spinel peridotites from the upper mantle, characterized by Mg#s between 0.90 and 0.92, Al2O3 between 1.66 and 5.34 wt%, and Cr2O3 between 0.62 and 0.96 wt%. Water contents as measured by SIMS range from 68 ± 7 to 261 ± 11 µg/g H2O and correlate well with Al2O3 contents (r = 0.80) and Cr#s (r. = -0.89). We also describe in detail an optimized strategy, employing both SIMS and FTIR, for quantifying structural water in highly altered samples such as abyssal peridotite. This approach first analyzes individual oriented grains by polarized FTIR, which provides an overview of alteration. Subsequently, the same grain along with others of the same sample is measured using SIMS, thereby gaining information about homogeneity at the hand sample scale, which is key for understanding the geological history of these rocks.


Sign in / Sign up

Export Citation Format

Share Document