partial melting
Recently Published Documents


TOTAL DOCUMENTS

1442
(FIVE YEARS 316)

H-INDEX

106
(FIVE YEARS 7)

2022 ◽  
Vol 9 ◽  
Author(s):  
Wu Wei ◽  
Chuan-Zhou Liu ◽  
Ross N. Mitchell ◽  
Wen Yan

Triassic volcanic rocks, including basalts and dacites, were drilled from Meiji Atoll in the South China Sea (SCS), which represents a rifted slice from the active continental margin along the Cathaysia Block. In this study, we present apatite and whole rock geochemistry of Meiji dacites to decipher their petrogenesis. Apatite geochronology yielded U-Pb ages of 204–221 Ma, which are identical to zircon U-Pb ages within uncertainty and thus corroborate the formation of the Meiji volcanic rocks during the Late Triassic. Whole rock major elements suggest that Meiji dacites mainly belong to the high-K calc-alkaline series. They display enriched patterns in light rare earth elements (LREE) and flat patterns in heavy rare earth elements (HREE). They show enrichment in large-ion lithophile elements (LILE) and negative anomalies in Eu, Sr, P, Nb, Ta, and Ti. The dacites have initial 87Sr/86Sr ratios of 0.7094–0.7113, εNd(t) values of -5.9–-5.4 and εHf(t) values of -2.9–-1.7, whereas the apatite has relatively higher initial 87Sr/86Sr ratios (0.71289–0.71968) and similar εNd(t) (-8.13–-4.56) values. The dacites have homogeneous Pb isotopes, with initial 206Pb/204Pb of 18.73–18.87, 207Pb/204Pb of 15.75–15.80, and 208Pb/204Pb of 38.97–39.17. Modeling results suggest that Meiji dacites can be generated by <40% partial melting of amphibolites containing ∼10% garnet. Therefore, we propose that the Meiji dacites were produced by partial melting of the lower continental crust beneath the South China block, triggered by the underplating of mafic magmas as a response to Paleo-Pacific (Panthalassa) subduction during the Triassic. Meiji Atoll, together with other microblocks in the SCS, were rifted from the South China block and drifted southward due to continental extension and the opening of the SCS.


Author(s):  
Aton Patonah ◽  
Haryadi Permana ◽  
Ildrem Syafri

Gabbro, is a fossil remnant of oceanic crust in western part of Java, found at Bayah Geological Complex (BGC) and Ciletuh Melange Complex (CMC), Indonesia. It has been studied by using petrographic, X-Ray Fluorescence (XRF), and inductively coupled plasma-mass spectrometry (ICP-MS) and mineralogical (microprobe) analyses. Mineral and geochemical composition of these rocks provide important clues to their origins since the rocks have been deformed and gone through auto metamorphism, beside they contain the economic mineral and or rare earth elements (REE). Gabbroic rocks in these two areas generally shows phaneritic to porphyritic texture, granular texture. These rocks in CMC are dominated by plagioclase (oligoclase to albite), hornblende, pyroxene, partly altered to tremolite, actinolite, chlorite, epidote, and sericite; meanwhile those of BGC dominantly consist of plagioclase, pyroxene, hornblende, some present of chlorite, actinolite, epidote and biotite as secondary minerals. In multi-element diagrams, gabbroic rocks in CMC show strong negative Sr and Zr, but positive Nb anomaly, while those of BGC show strong negative anomaly of Nb and Zr. In addition, based on rare earth elements (REE) diagrams, gabbroic rocks in CMC show depleted of light rare earth elements (LREE) with negative Eu anomaly, while gabbro’s in BGC show enrichment of LREE. These characteristics indicate that GBC’s and CMC’s gabbroic rocks came from different magma sources, one was formed by partial melting of depleted upper mantle reservoir while the other one was formed by partial melting of mantle wedge with active participation of subducted slab in an arc tectonic setting, suprasubduction zone which were formed at started Upper Cretaceous to Paleogene, and they had retrograde metamorphism to epidote amphibolite facies.


Author(s):  
Rasha Houssam Khaddam Rasha Houssam Khaddam

The aim of the research is to develop a conception of the proposed model for Mantle upwelling (diapering) in the coastal region, as the results of this research showed the occurrence of Mantle upwelling regression under the coastal region during the Pliocene period, and this led to the occurrence of basaltic deposits in the Syrian coast during the Pliocene, where we note the center of the vaulting was under Qardaha and Safita, and the Mantle upwelling reached a depth of 35 km within the continental crust, where basalt rocks were formed as a result of partial melting of the upper mantle, and it is upwelled with low melting and differential degrees. Basalt rocks in the initial differential phase of the original basaltic silage.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 18
Author(s):  
Nadezhda Tolstykh ◽  
Valeriya Brovchenko ◽  
Viktor Rad’ko ◽  
Maria Shapovalova ◽  
Vera Abramova ◽  
...  

Pyrrhotite (or Cu-poor) massive ores of the Skalisty mine located in Siberia, Russia, are unique in terms of their geochemical features. These ores are Ni-rich with Ni/Cu ratios in the range 1.3–1.9 and contain up to 12.25 ppm Ir + Rh + Ru in bulk composition, one of the highest IPGE contents for the Norilsk-Talnakh ore camp. The reasons behind such significant IPGE Contents cannot simply be explained by the influence of discrete platinum-group minerals on the final bulk composition of IPGE because only inclusions of Pd minerals such as menshikovite, majakite, and mertieite II in Pd-maucherite were observed. According to LA-ICP-MS data obtained, base metal sulfides such as pyrrhotite, pentlandite, and pyrite contain IPGE as the trace elements. The most significant IPGE concentrator being Py, which occurs only in the least fractionated ores, and contains Os up to 4.8 ppm, Ir about 6.9 ppm, Ru about 38.3 ppm, Rh about 36 ppm, and Pt about 62.6 ppm. High IPGE contents in the sulfide melt may be due to high degrees of partial melting of the mantle, interaction with several low-grade IPGE impulses of magma, and (or) fractionation of the sulfide melt in the magma chamber.


2021 ◽  
Vol 5 (4) ◽  
pp. 188-197
Author(s):  
I. A. Sokolov ◽  
M. K. Skakov ◽  
A. Zh. Miniyazov ◽  
B. T. Aubakirov ◽  
T. R. Tulenbergenov ◽  
...  

The paper provides data on the peculiarity of change in the structure, structural phase changes and destructions in beryllium resulting from interaction with a near-wall plasma of fusion facilities. Beryllium resistance under conditions of ITER operation was evaluated, which considers factors leading to possible partial melting and erosion of panels of the ITER first wall. It presents the modelling of a heat s distribution in element (”finger”) of the first wall at ”normal” and ”increased” heat flux of the ITER operation.


Geology ◽  
2021 ◽  
Author(s):  
Peng Gao ◽  
Chris Yakymchuk ◽  
Jian Zhang ◽  
Changqing Yin ◽  
Jiahui Qian ◽  
...  

Hafnium (Hf) isotopes in zircon are important tracers of granite petrogenesis and continental crust evolution. However, zircon in granites generally shows large Hf isotope variations, and the reasons for this are debated. We applied U-Pb geochronology, trace-element, and Hf isotope analyses of zircon from the Miocene Himalayan granites to address this issue. Autocrystic zircon had εHf values (at 20 Ma) of –12.0 to –4.3 (median = –9). Inherited zircon yielded εHf values (at 20 Ma) of –34.8 to +0.3 (median = –13); the majority of εHf values were lower than those of autocrystic zircon. The εHf values of inherited zircon with high U concentrations resembled those of autocrystic zircon. Geochemical data indicates that the granites were generated during relatively low-temperature (<800 °C) partial melting of metasedimentary rocks, which, coupled with kinetic hindrance, may have led to the preferential dissolution of high-U zircon that could dissolve more efficiently into anatectic melt due to higher amounts of radiation damage. Consequently, Hf values of autocrystic zircon can be biased toward the values of U-rich zircon in the source. By contrast, literature data indicate that granites generated at high temperatures (<820–850 °C) generally contain autocrystic and inherited zircons with comparable Hf isotope values. During higher-temperature melting, indiscriminate dissolution of source zircon until saturation is reached will result in near-complete inheritance of Hf isotope ratios from the source. Our results impose an extra layer of complexity to interpretation of the zircon Hf isotope archive that is not currently considered.


Minerals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1356
Author(s):  
Chenglai Deng ◽  
Changqing Hu ◽  
Ming Li ◽  
Wu Li

There has been little research on the metal isotopic composition of adakitic rock. The main objective of our investigation was to obtain more knowledge on the iron isotopic composition of adakitic rocks and provide new evidence for the genesis of Shangcheng pluton from an iron isotope perspective. The Dabie orogen is divided into eastern and western areas by the Shangcheng-Macheng fault, and the Shangcheng pluton is located in the western Dabie orogen area. The iron isotopic composition of these rocks ranges from 0.08‰ to 0.20‰ (2SD, n = 3). The δ56Fe values of two rocks from the SGD (Sigudun) unit are relatively low (0.11 ± 0.03‰ and 0.08 ± 0.04‰), while the δ56Fe values of the other samples are basically consistent (0.18–0.2‰). Evidence from elemental geochemical characteristics and petrogenesis defines the Shangcheng pluton as adakitic rocks. Our investigation on the elemental and isotopic compositions hints that the enrichment of heavy iron isotopes cannot be explained by weathering/alteration and fluid exsolution. Fractional crystallization of magnetite may account for the enrichment of light iron isotopes in two rocks from the SGD unit, while the fractional iron isotope trend in the other five samples can be explained by Δ56Fecrystal-melt = ~0.035‰. Two investigated rocks from SGD units may have been derived from the partial melting of amphibolite, while the other five samples may have been derived from the partial melting of eclogite containing 10–15% garnet.


Sign in / Sign up

Export Citation Format

Share Document