Slip-line field analysis of incipient plane strain extrusion through frictionless and perfectly rough wedge-shaped dies

1969 ◽  
Vol 11 (3) ◽  
pp. 281-291 ◽  
Author(s):  
L.I. Kronsjö
Author(s):  
M V Srinivas ◽  
P Alva ◽  
S K Biswas

A slip line field is proposed for symmetrical single-cavity closed-die forging by rough dies. A compatible velocity field is shown to exist. Experiments were conducted using lead workpiece and rough dies. Experimentally observed flow and load were used to validate the proposed slip line field. The slip line field was used to simulate the process in the computer with the objective of studying the influence of flash geometry on cavity filling.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

This chapter is concerned with the formulations and solutions for plane plastic flow. In plane plastic flow, velocities of all points occur in planes parallel to a certain plane, say the (x, y) plane, and are independent of the distance from that plane. The Cartesian components of the velocity vector u are ux(x, y), uy(x, y), and uz = 0. For analyzing the deformation of rigid-perfectly plastic and rate-insensitive materials, a mathematically sound slip-line field theory was established (see the books on metal forming listed in Chap. 1). The solution techniques have been well developed, and the collection of slip-line solutions now available is large. Although these slip-line solutions provide valuable insight into deformation modes and forming loads, slip-line field analysis becomes unwieldy for nonsteady-state problems where the field has to be updated as deformation proceeds to account for changes in material boundaries. Furthermore, the neglect of work-hardening, strain-rate, and temperature effects is inappropriate for certain types of problems. Many investigators, notably Oxley and his co-workers, have attempted to account for some of these effects in the construction of slip-line fields. However, by so doing, the problem becomes analytically difficult, and recourse is made to experimental determination of velocity fields, similarly to the visioplasticity method. Some of this work is summarized in Reference [2]. The applications of the finite-element method are particularly effective to the problems for which the slip-line solutions are difficult to obtain. The finite-element formulation specific to plane flow is recapitulated here.


Author(s):  
Yigˇit Karpat ◽  
Tugˇrul O¨zel

Analysis of tool-chip friction for tools with edge design in metal cutting helps to understand the complex material behavior around the cutting edge of the tool. The results of this analysis can be used to identify optimum tool edge design to achieve the most desirable machining performance. In this study, slip-line field analysis approach is used to investigate the average friction factor at the tool-chip interface and the dead metal zone phenomenon in orthogonal cutting for chamfered and honed tools. In an experimental set-up, an orthogonal cutting test of AISI 4340 steel is performed. Measured forces are utilized in identifying the friction factors at the tool-interface for both chamfered and honed tools for varying feed rates. Comparison of predicted and measured forces indicates good agreements. The results of this study can be utilized in designing friction at tool-chip interface for Finite Element simulations of machining with edge design tools. This study can also be extended to waterfall hone tools to identify the most optimum cutting edge geometry.


1971 ◽  
Vol 13 (6) ◽  
pp. 416-428 ◽  
Author(s):  
R. Venter ◽  
W. Johnson ◽  
M. C. de Malherbe

In Part 1, the slip-line field solutions and the associated load requirements necessary for the indentation of anisotropic solids are presented. The analysis is based on Hill's approach to the analysis of anisotropic material. All results are recorded in terms of a lumped anisotropic parameter, c. In Part 2, the results of an investigation to determine the anisotropic parameters of a commercially available aluminium are reported. Specimens machined from the aluminium at selected orientations to the anisotropic axes were indented using a nominally frictionless flat rectangular punch. A comparison between the theoretical and experimental indentation loads is given.


Sign in / Sign up

Export Citation Format

Share Document