velocity field
Recently Published Documents





2022 ◽  
Vol 155 ◽  
pp. 111742
Kheder Suleiman ◽  
Qixuan Song ◽  
Xuelan Zhang ◽  
Shengna Liu ◽  
Liancun Zheng

2022 ◽  
Boxin Yang ◽  
Haojie Xu ◽  
Qi An

Abstract Energy method is an essential theoretical approach to analyze plastic forming, which is widely used in rolling. An analysis model for vertical rolling process is established according to energy theory. By using global weighted method firstly, the 3D continuous velocity field, strain rate field and the corresponding power functional are proposed. The unknown variables are solved numerically based on the principle of minimum energy. Then, deformation parameters and rolling force are determined. The analysis on specific examples with the width reduction rate of 0.03~0.05 shows that the theoretical prediction value of weighted model is in good agreement with experimental results. Moreover, the effects of several shape and rolling parameters on rolling force, rolling power and edge deformation are studied. Both the width reduction rate and initial slab thickness have significant influences on dog-bone size and rolling force. A wider slab slightly increases the nonuniformity of dog-bone deformation. An increase of vertical roller radius can weaken the edge deformation.

2022 ◽  
Vol 12 (1) ◽  
Hiroto Ozaki ◽  
Takeshi Aoyagi

AbstractConsiderable attention has been given to deep-learning and machine-learning techniques in an effort to reduce the computational cost of computational fluid dynamics simulation. The present paper addresses the prediction of steady flows passing many fixed cylinders using a deep-learning model and investigates the accuracy of the predicted velocity field. The deep-learning model outputs the x- and y-components of the flow velocity field when the cylinder arrangement is input. The accuracy of the predicted velocity field is investigated, focusing on the velocity profile of the fluid flow and the fluid force acting on the cylinders. The present model accurately predicts the flow when the number of cylinders is equal to or close to that set in the training dataset. The extrapolation of the prediction to a smaller number of cylinders results in error, which can be interpreted as internal friction of the fluid. The results of the fluid force acting on the cylinders suggest that the present deep-learning model has good generalization performance for systems with a larger number of cylinders.

2022 ◽  
Shintaro Goto ◽  
Kumi Nakai ◽  
Naoki Kanda ◽  
Yuto Iwasaki ◽  
Taku Nonomura ◽  

2022 ◽  
Vol 8 ◽  
Dingge Yang ◽  
Quanyuan Jiang ◽  
Jingfeng Wu ◽  
Yanhua Han ◽  
Bin Ding ◽  

Aiming at the noise control of the HVDC converter station, a one-dimensional two-port metamaterial muffler based on the acoustic slow-wave effect is designed and manufactured. The metamaterial muffler achieves a broadband quasi-perfect absorption of noise from 600 to 900 Hz while ensuring a certain ventilation capacity. In addition, the internal equivalent sound velocity curve and the sound pressure and velocity field of the muffler are used to reveal the mechanism of its broadband quasi-perfect sound absorption. The performance of the muffler was verified by theoretical, numerical, and experimental models. The work in this paper is of guiding significance for solving the noise problem in HVDC converter stations.

2022 ◽  
Vol 924 (1) ◽  
pp. 4
Olivia H. Wilkins ◽  
P. Brandon Carroll ◽  
Geoffrey A. Blake

Abstract The Orion Kleinmann-Low nebula (Orion KL) is notoriously complex and exhibits a range of physical and chemical components. We conducted high-angular-resolution (subarcsecond) observations of 13CH3OH ν = 0 (∼0.″3 and ∼0.″7) and CH3CN ν 8 = 1 (∼0.″2 and ∼0.″9) line emission with the Atacama Large Millimeter/submillimeter Array (ALMA) to investigate Orion KL’s structure on small spatial scales (≤350 au). Gas kinematics, excitation temperatures, and column densities were derived from the molecular emission via a pixel-by-pixel spectral line fitting of the image cubes, enabling us to examine the small-scale variation of these parameters. Subregions of the Hot Core have a higher excitation temperature in a 0.″2 beam than in a 0.″9 beam, indicative of possible internal sources of heating. Furthermore, the velocity field includes a bipolar ∼7–8 km s−1 feature with a southeast–northwest orientation against the surrounding ∼4–5 km s−1 velocity field, which may be due to an outflow. We also find evidence of a possible source of internal heating toward the Northwest Clump, since the excitation temperature there is higher in a smaller beam versus a larger beam. Finally, the region southwest of the Hot Core (Hot Core-SW) presents itself as a particularly heterogeneous region bridging the Hot Core and Compact Ridge. Additional studies to identify the (hidden) sources of luminosity and heating within Orion KL are necessary to better understand the nebula and its chemistry.

Mathematics ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 123
Renata Nikonorova ◽  
Dilara Siraeva ◽  
Yulia Yulmukhametova

In this paper, exact solutions with a linear velocity field are sought for the gas dynamics equations in the case of the special state equation and the state equation of a monatomic gas. These state equations extend the transformation group admitted by the system to 12 and 14 parameters, respectively. Invariant submodels of rank one are constructed from two three-dimensional subalgebras of the corresponding Lie algebras, and exact solutions with a linear velocity field with inhomogeneous deformation are obtained. On the one hand of the special state equation, the submodel describes an isochoric vortex motion of particles, isobaric along each world line and restricted by a moving plane. The motions of particles occur along parabolas and along rays in parallel planes. The spherical volume of particles turns into an ellipsoid at finite moments of time, and as time tends to infinity, the particles end up on an infinite strip of finite width. On the other hand of the state equation of a monatomic gas, the submodel describes vortex compaction to the origin and the subsequent expansion of gas particles in half-spaces. The motion of any allocated volume of gas retains a spherical shape. It is shown that for any positive moment of time, it is possible to choose the radius of a spherical volume such that the characteristic conoid beginning from its center never reaches particles outside this volume. As a result of the generalization of the solutions with a linear velocity field, exact solutions of a wider class are obtained without conditions of invariance of density and pressure with respect to the selected three-dimensional subalgebras.

2021 ◽  
Vol 9 (3) ◽  
pp. 114-121
Tamás Tolnai

Differences in flow rates of this nature have a significant effect on the unevenness of the moisture content of the dried material, since the material which remains in the drying chamber for an unnecessarily long time is over-dried and the under-drying is a problem for the material remaining in the dryer for too short a time. In this article, I analyzed the effect of increasing particle-wall friction on the unevenness of the particle flow velocity field. The research has shown that dead zones are formed in the vicinity of the rough walls, which reduce the uniformity of the flow. The results show that the tribological properties of the inner wall surfaces of the dryers can have a very significant effect on the efficient operation of the dryers.

Sign in / Sign up

Export Citation Format

Share Document