Identification of Friction Factors for Chamfered and Honed Tools Through Slip-Line Field Analysis

Author(s):  
Yigˇit Karpat ◽  
Tugˇrul O¨zel

Analysis of tool-chip friction for tools with edge design in metal cutting helps to understand the complex material behavior around the cutting edge of the tool. The results of this analysis can be used to identify optimum tool edge design to achieve the most desirable machining performance. In this study, slip-line field analysis approach is used to investigate the average friction factor at the tool-chip interface and the dead metal zone phenomenon in orthogonal cutting for chamfered and honed tools. In an experimental set-up, an orthogonal cutting test of AISI 4340 steel is performed. Measured forces are utilized in identifying the friction factors at the tool-interface for both chamfered and honed tools for varying feed rates. Comparison of predicted and measured forces indicates good agreements. The results of this study can be utilized in designing friction at tool-chip interface for Finite Element simulations of machining with edge design tools. This study can also be extended to waterfall hone tools to identify the most optimum cutting edge geometry.

1980 ◽  
Vol 102 (4) ◽  
pp. 310-314 ◽  
Author(s):  
W. A. Morcos

Lee and Shaffer’s slip line field solution [11] for orthogonal cutting is generalized to the free oblique continuous cutting problem in plane strain. Comparison of the results as predicted by this solution with those of the plane strain modified Merchant model [8] and experimental results is achieved for some key metal cutting parameters. It is shown that in some respect, the plane strain modified Merchant model [8] predicts values of parameters which are closer to experimental results.


Author(s):  
M V Srinivas ◽  
P Alva ◽  
S K Biswas

A slip line field is proposed for symmetrical single-cavity closed-die forging by rough dies. A compatible velocity field is shown to exist. Experiments were conducted using lead workpiece and rough dies. Experimentally observed flow and load were used to validate the proposed slip line field. The slip line field was used to simulate the process in the computer with the objective of studying the influence of flash geometry on cavity filling.


Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

This chapter is concerned with the formulations and solutions for plane plastic flow. In plane plastic flow, velocities of all points occur in planes parallel to a certain plane, say the (x, y) plane, and are independent of the distance from that plane. The Cartesian components of the velocity vector u are ux(x, y), uy(x, y), and uz = 0. For analyzing the deformation of rigid-perfectly plastic and rate-insensitive materials, a mathematically sound slip-line field theory was established (see the books on metal forming listed in Chap. 1). The solution techniques have been well developed, and the collection of slip-line solutions now available is large. Although these slip-line solutions provide valuable insight into deformation modes and forming loads, slip-line field analysis becomes unwieldy for nonsteady-state problems where the field has to be updated as deformation proceeds to account for changes in material boundaries. Furthermore, the neglect of work-hardening, strain-rate, and temperature effects is inappropriate for certain types of problems. Many investigators, notably Oxley and his co-workers, have attempted to account for some of these effects in the construction of slip-line fields. However, by so doing, the problem becomes analytically difficult, and recourse is made to experimental determination of velocity fields, similarly to the visioplasticity method. Some of this work is summarized in Reference [2]. The applications of the finite-element method are particularly effective to the problems for which the slip-line solutions are difficult to obtain. The finite-element formulation specific to plane flow is recapitulated here.


1966 ◽  
Vol 8 (1) ◽  
pp. 36-41 ◽  
Author(s):  
H. E. Enahoro ◽  
P. L. B. Oxley

In recent papers it has been suggested that over part of the tool-chip contact zone the chip does not slide but sticks to the tool, chip flow taking place by shear within the body of the chip. Sticking contact is inconsistent with steady state cutting and in this paper a slip-line field model of chip flow is presented which does not include sticking contact and which is consistent with the relevant experimental observations.


1998 ◽  
Vol 120 (4) ◽  
pp. 693-699 ◽  
Author(s):  
D. J. Waldorf ◽  
R. E. DeVor ◽  
S. G. Kapoor

Under normal machining conditions, the cutting forces are primarily due to the bulk shearing of the workpiece material in a narrow zone called the shear zone. However, under finishing conditions, when the uncut chip thickness is of the order of the cutting edge radius, a ploughing component of the forces becomes significant as compared to the shear forces. Predicting forces under these conditions requires an estimate of ploughing. A slip-line field is developed to model the ploughing components of the cutting force. The field is based on other slip-line fields developed for a rigid wedge sliding on a half-space and for negative rake angle orthogonal cutting. It incorporates the observed phenomena of a small stable build-up of material adhered to the edge and a raised prow of material formed ahead of the edge. The model shows how ploughing forces are related to cutter edge radius—a larger edge causing larger ploughing forces. A series of experiments were run on 6061-T6 aluminum using tools with different edge radii—including some exaggerated in size—and different levels of uncut chip thickness. Resulting force measurements match well to predictions using the proposed slip-line field. The results show great promise for understanding and quantifying the effects of edge radius and worn tool on cutting forces.


Metal Forming ◽  
2012 ◽  
pp. 128-162
Author(s):  
William F. Hosford ◽  
Robert M. Caddell

Sign in / Sign up

Export Citation Format

Share Document