The effect of piperonyl butoxide and triorthocresyl phosphate on the activity of juvenile hormone mimics and their sulphur isosteres in Tenebrio molitor L. and oncopeltus fasciatus (Dallas)

Life Sciences ◽  
1973 ◽  
Vol 13 (6) ◽  
pp. 733-742 ◽  
Author(s):  
Keith R. Solomon ◽  
Stephen B. Bowlus ◽  
Robert L. Metcalf ◽  
John A. Katzenellenbogen
1975 ◽  
Vol 21 (2) ◽  
pp. 463-469 ◽  
Author(s):  
Paul Sroka ◽  
Robert H. Barth ◽  
Lawrence I. Gilbert ◽  
Gerardus B. Staal

1973 ◽  
Vol 63 (1) ◽  
pp. 7-16 ◽  
Author(s):  
I. Gelbič ◽  
F. Sehnal

AbstractLaboratory experiments with juvenile hormone analogues on Cydia pomonella (L.) showed that Cecropia C17 juvenile hormone (methyl 10,ll-epoxy-3,7,ll-trimethyl-2,6-dodecadienoate) was the most active of the 28 compounds tested. When applied to four-hour-old eggs at 0.1 μg/egg, the hormone caused 100% failure in embryogenesis, while the other compounds were at least five times less effective. Depending on the time since ecdysis and the dose, juvenile hormone mimics applied to last-instar larvae resulted in a wide range of intermediate forms. Against three-day-old last-instar larvae, the Cecropia C17 hormone gave 100% inhibition of development at a dose of 1 μg/larva, while three other compounds (methyl 10,11-epoxy-3,7,11-trimethyl-2,6-dodecadienoate, ethyl 11-chloro-3,7,11-trimethyl-2-dodecenoate and ethyl 3,7,11-tri-methyl-2,4-dodecadienoate) gave the same effect at 2–5 μg/larva. Against newly emerged adults, the last two compounds at 10–50 μg/insect reduced fecundity and fertility to 0–81% and 0–50%, respectively, of their normal levels.


1966 ◽  
Vol 44 (3) ◽  
pp. 507-522
Author(s):  
PETER A. LAWRENCE

1. As in Rhodnius, the larval Oncopeltus has bristles which are supplemented at each moult. However, at metamorphosis a dense population of non-innervated hairs develops. 2. Implantation of corpora allata into 5th-stage larvae showed that the development of these hairs can be inhibited universally or locally by the juvenile hormone (JH). 3. Transplantations of integument between 5th-stage larvae of different stages in the moult cycle gave some information about the power of the host to synchronize the graft to its own moult cycle. 4. Transplantations between different larval stages showed that the grafted in tegument responded to the hormonal milieu of the host. 5. Adult integument was transplanted onto larvae to study the reversal of metamorphosis. It was found that the development of a supernumerary population of hairs depended on the integument passing through a moult cycle in the presence of JH. After two moults in the presence of JH, reversal of metamorphosis was found to vary over the surface of the transplant, being further advanced at the margin. At the edge of the graft properly formed larval bristles developed, while at the centre adult hairs were formed in adult cuticle. Intermediately formed bristles were found in the intervening areas. It is suggested that reactions associated with wounding are the cause of this heterogeneous result. 6. The significance of these results in relation to other work and to theories concerning the mode of action of the juvenile hormone is discussed.


Sign in / Sign up

Export Citation Format

Share Document