codling moth
Recently Published Documents


TOTAL DOCUMENTS

1703
(FIVE YEARS 127)

H-INDEX

50
(FIVE YEARS 5)

Machines ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 52
Author(s):  
Mark Jacob Schrader ◽  
Peter Smytheman ◽  
Elizabeth H. Beers ◽  
Lav R. Khot

This note describes the development of a plug-in imaging system for pheromone delta traps used in pest population monitoring. The plug-in comprises an RGB imaging sensor integrated with a microcontroller unit and associated hardware for optimized power usage and data capture. The plug-in can be attached to the top of a modified delta trap to realize periodic image capture of the trap liner (17.8 cm × 17.8 cm). As configured, the captured images are stored on a microSD card with ~0.01 cm2 pixel−1 spatial resolution. The plug-in hardware is configured to conserve power, as it enters in sleep mode during idle operation. Twenty traps with plug-in units were constructed and evaluated in the 2020 field season for codling moth (Cydia pomonella) population monitoring in a research study. The units reliably captured images at daily interval over the course of two weeks with a 350 mAh DC power source. The captured images provided the temporal population dynamics of codling moths, which would otherwise be achieved through daily manual trap monitoring. The system’s build cost is about $33 per unit, and it has potential for scaling to commercial applications through Internet of Things-enabled technologies integration.


2021 ◽  
Vol 14 (4) ◽  
pp. 1642-1647
Author(s):  
Irina Agasyeva

One of the promising entomophages capable of controlling the abundance of the codling moth is Habrobracon hebetor Say. Natural populations of the gabrobragon can reduce the number of caterpillars of the corn moth to 22%, the garden moth to 35%, the cotton moth to 45%, and the gamma moth to 30%. This work aims to assess the parasitic activity of the gabrobragon as a regulator of the codling moth abundance in various geographic populations, to select a host insect for its mass breeding in laboratory conditions, and to assess the molecular genetic variability of the structure of H. hebetor populations. The capture of natural populations of the gabrobragon H. hebetor was carried out in apple orchards in Krasnodar Krai and Stavropol Krai of Russia using cassettes in which caterpillars of the codling moth were placed. As a result of the research, the natural starting population of the gabrobragon H. hebetor was captured, and a method for their maintenance and breeding was developed. The most effective host insect is the wax moth (Galleria mellonela L.), which resulted in 195 adults, compared to 98 of the mill moth (Ephestia kuhniella Zell.). The gabrobragon population introduced into the apple tree cenosis continued its reproduction in natural conditions and largely suppressed the number and harmfulness of the codling moth. The RAPD analysis of the Krasnodar and Stavropol populations of Habrobracon hebetor Say revealed a high level of DNA polymorphism and genetic diversity in the studied geographic populations of the gabrobragon. At the same time, intrapopulation variability was 87.1%, while interpopulation variability accounted for 12.9% of the total indicator. The limited gene flow (Nm = 3.298) results in relatively low identity (GI = 0.906) between populations and significant interpopulation variability. This indicates that the analyzed insect samples probably represent different geographic populations of the H. hebetor ectoparasite.


Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 28
Author(s):  
Patrick Mwanza ◽  
Michael Jukes ◽  
Gill Dealtry ◽  
Michael Lee ◽  
Sean Moore

Cryptophlebia leucotreta granulovirus-SA (CrleGV-SA) is used as a commercial biopesticide for the false codling moth, Thaumatotibia leucotreta, in citrus and other crops. The virus is sensitive to UV irradiation from sunlight, which reduces its efficacy as a biopesticide in the field. We selected a UV-resistant CrleGV-SA isolate, with more than a thousand-fold improved virulence compared to the wild-type isolate, measured by comparing LC50 values. CrleGV-SA purified from infected T. leucotreta larvae was exposed to UV irradiation under controlled laboratory conditions in a climate chamber mimicking field conditions. Five cycles of UV exposure, followed by propagating the virus that retained infectivity in vivo with re-exposure to UV, were conducted to isolate and select for UV-resistant virus. Serial dilution bioassays were conducted against neonates after each UV exposure cycle. The concentration-responses of the infectious UV-exposed virus populations were compared by probit analysis with those from previous cycles and from the original CrleGV-SA virus population. NGS sequences of CrleGV-SA samples from UV exposure cycle 1 and cycle 5 were compared with the GenBank CrleGV-SA sequence. Changes in the genomes of infective virus from cycles 1 and 5 generated SNPs thought to be responsible for establishing UV tolerance. Additional SNPs, detected only in the cycle 5 sequence, may enhance UV tolerance and improve the virulence of the UV-tolerant population.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 2
Author(s):  
Wen-Ting Dai ◽  
Jin Li ◽  
Li-Ping Ban

The codling moth, Cydia pomonella L. (Lepidoptera, Tortricidae), is a serious invasive pest of pome fruits. Currently, C. pomonella management mainly relies on the application of insecticides, which have driven the development of resistance in the insect. Understanding the genetic mechanisms of insecticide resistance is of great significance for developing new pest resistance management techniques and formulating effective resistance management strategies. Using existing genome resequencing data, we performed selective sweep analysis by comparing two resistant strains and one susceptible strain of the insect pest and identified seven genes, among which, two (glycine receptor and glutamate receptor) were under strong insecticide selection, suggesting their functional importance in insecticide resistance. We also found that eight genes including CYP6B2, CYP307a1, 5-hydroxytryptamine receptor, cuticle protein, and acetylcholinesterase, are potentially involved in cross-resistance to azinphos-methyl and deltamethrin. Moreover, among several P450s identified as positively selected genes, CYP6B2, CYP4C1, and CYP4d2 showed the highest expression level in larva compared to other stages tested, and CYP6B2 also showed the highest expression level in midgut, supporting the roles they may play in insecticide metabolism. Our results provide several potential genes that can be studied further to advance understanding of complexity of insecticide resistance mechanisms in C. pomonella.


Foods ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Nader Ekramirad ◽  
Alfadhl Y. Khaled ◽  
Lauren E. Doyle ◽  
Julia R. Loeb ◽  
Kevin D. Donohue ◽  
...  

Codling moth (CM) (Cydia pomonella L.), a devastating pest, creates a serious issue for apple production and marketing in apple-producing countries. Therefore, effective nondestructive early detection of external and internal defects in CM-infested apples could remarkably prevent postharvest losses and improve the quality of the final product. In this study, near-infrared (NIR) hyperspectral reflectance imaging in the wavelength range of 900–1700 nm was applied to detect CM infestation at the pixel level for three organic apple cultivars, namely Gala, Fuji and Granny Smith. An effective region of interest (ROI) acquisition procedure along with different machine learning and data processing methods were used to build robust and high accuracy classification models. Optimal wavelength selection was implemented using sequential stepwise selection methods to build multispectral imaging models for fast and effective classification purposes. The results showed that the infested and healthy samples were classified at pixel level with up to 97.4% total accuracy for validation dataset using a gradient tree boosting (GTB) ensemble classifier, among others. The feature selection algorithm obtained a maximum accuracy of 91.6% with only 22 selected wavelengths. These findings indicate the high potential of NIR hyperspectral imaging (HSI) in detecting and classifying latent CM infestation in apples of different cultivars.


Koedoe ◽  
2021 ◽  
Vol 63 (1) ◽  
Author(s):  
Isiah Nthenga ◽  
Rinus Knoetze ◽  
Antoinette P. Malan

Entomopathogenic nematodes (EPNs) are microscopic roundworms that are found in soil worldwide. They deliver an important ecosystem service through preventing natural flares in insect reproduction by means of utilising the soil stages of insects as a food source and by acting as natural biocontrol agents. A survey of EPNs was conducted in the JS Marais Nature Reserve, Stellenbosch, in the Western Cape province of South Africa. Soil samples were baited with the larvae of three susceptible hosts, codling moth (Cydia pomonella), wax moth (Galleria mellonella) and mealworm (Tenebrio molitor) to determine the presence of EPN. Of the 76 soil samples collected across the reserve, 39 were found to be positive for the presence of EPN (51.32%). Among the positive samples, 87% contained Steinernema isolates, 8% contained Heterorhabditis and 5% contained the Oscheius sp. Morphological and molecular studies were performed to characterise the isolates to species level. The Steinernema species were identified as Steinernema khoisanae in 34 samples, and as Steinernema nguyeni in five samples. The only species of Heterorhabditis found was H. safricana, which was identified from three samples. An unknown Oscheius sp. was found in two samples. The reserve’s population of S. khoisanae showed interesting inter-individual variation (93%) early in the internal transcribe spacer (ITS) region, leading to short single-usable sequences, which, in most cases, included only the ITS1 or ITS2 region. However, using the D2D3 confirmed their identity as S. khoisanae, with such occurring in all areas and soil types of the reserve.Conservation implications: The undisturbed alluvial fynbos and renosterveld of the JS Marais Nature Reserve showed high EPN abundance and diversity in stark contrast to the agro-ecosystems present in the Cape floristic region. This finding, on a micro level, should be conserved for future bioprospecting in the fynbos for EPNs with potential as biocontrol agents.


Author(s):  
Yi-Han Xia ◽  
Hong-Lei Wang ◽  
Bao-Jian Ding ◽  
Glenn P. Svensson ◽  
Carin Jarl-Sunesson ◽  
...  

AbstractSynthetic pheromones have been used for pest control over several decades. The conventional synthesis of di-unsaturated pheromone compounds is usually complex and costly. Camelina (Camelina sativa) has emerged as an ideal, non-food biotech oilseed platform for production of oils with modified fatty acid compositions. We used Camelina as a plant factory to produce mono- and di-unsaturated C12 chain length moth sex pheromone precursors, (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid, by introducing a fatty acyl-ACP thioesterase FatB gene UcTE from California bay laurel (Umbellularia californica) and a bifunctional ∆9 desaturase gene Cpo_CPRQ from the codling moth, Cydia pomonella. Different transgene combinations were investigated for increasing pheromone precursor yield. The most productive Camelina line was engineered with a vector that contained one copy of UcTE and the viral suppressor protein encoding P19 transgenes and three copies of Cpo_CPRQ transgene. The T2 generation of this line produced 9.4% of (E)-9-dodecenoic acid and 5.5% of (E,E)-8,10-dodecadienoic acid of the total fatty acids, and seeds were selected to advance top-performing lines to homozygosity. In the T4 generation, production levels of (E)-9-dodecenoic acid and (E,E)-8,10-dodecadienoic acid remained stable. The diene acid together with other seed fatty acids were converted into corresponding alcohols, and the bioactivity of the plant-derived codlemone was confirmed by GC-EAD and a flight tunnel assay. Trapping in orchards and home gardens confirmed significant and specific attraction of C. pomonella males to the plant-derived codlemone.


2021 ◽  
Vol 181 ◽  
pp. 111633
Author(s):  
Nader Ekramirad ◽  
Alfadhl Y. Khaled ◽  
Chadwick A. Parrish ◽  
Kevin D. Donohue ◽  
Raul T. Villanueva ◽  
...  

2021 ◽  
Author(s):  
Vladimir Sleahtici ◽  
◽  
Natalia Raileanu ◽  
Vasilisa Odobescu ◽  
Svetlana Jalba ◽  
...  

In this paper is reported the evaluation of biological efficacy of two minor components that was added to the basic sex pheromone component Cydia pomonella L., E8, E10-C12-OH. The use of minor component- C.M.-1 of increasing concentrations in binary mixture compositions with the basic sex phe-romone component of codling moth on pheromone-impregnated rubber septa in delta pheromone traps has shown an increased effectiveness by 56-62% in field trials on apple orchard. At the same time, the number of males caught in delta pheromone traps where were used minor component - C.M.-2 in binary mixture compositions increased by 29-35%. Auxiliary research is still needed.


Sign in / Sign up

Export Citation Format

Share Document