Asymptotic ratio set of von neumann algebras generated by temperature states in statistical mechanics

1977 ◽  
Vol 12 (1) ◽  
pp. 115-118 ◽  
Author(s):  
D. Testard,
1971 ◽  
Vol 23 (4) ◽  
pp. 598-607 ◽  
Author(s):  
Ole A. Nielsen

The fact that any von Neumann algebra on a separable Hilbert space has an essentially unique direct integral decomposition into factors means that there is a global as well as a local aspect to any partial classification of von Neumann algebras. More precisely, suppose that J is a statement about von Neumann algebras which is either true or false for any given von Neumann algebra. Then a von Neumann algebra is said to satisfy J globally if it satisfies J, and to satsify J locally if almost all the factors appearing in some (and hence in any) central decomposition of it satisfy J . In a recent paper [3], H. Araki and E. J. Woods introduced the notion of the asymptotic ratio set of a factor, and by means of this they made remarkable progress in the classification of factors.


2019 ◽  
Author(s):  
Serban-Valentin Stratila ◽  
Laszlo Zsido

Author(s):  
Ivan Bardet ◽  
Ángela Capel ◽  
Cambyse Rouzé

AbstractIn this paper, we derive a new generalisation of the strong subadditivity of the entropy to the setting of general conditional expectations onto arbitrary finite-dimensional von Neumann algebras. This generalisation, referred to as approximate tensorization of the relative entropy, consists in a lower bound for the sum of relative entropies between a given density and its respective projections onto two intersecting von Neumann algebras in terms of the relative entropy between the same density and its projection onto an algebra in the intersection, up to multiplicative and additive constants. In particular, our inequality reduces to the so-called quasi-factorization of the entropy for commuting algebras, which is a key step in modern proofs of the logarithmic Sobolev inequality for classical lattice spin systems. We also provide estimates on the constants in terms of conditions of clustering of correlations in the setting of quantum lattice spin systems. Along the way, we show the equivalence between conditional expectations arising from Petz recovery maps and those of general Davies semigroups.


Sign in / Sign up

Export Citation Format

Share Document