Effect of acclimation temperature on intraerythrocytic acid-base balance and nucleoside triphosphates in the carp, cyprinus carpio

1983 ◽  
Vol 54 (2) ◽  
pp. 145-159 ◽  
Author(s):  
C. Albers ◽  
K.-H. Goetz ◽  
G.M. Hughes
1984 ◽  
Vol 108 (1) ◽  
pp. 25-43 ◽  
Author(s):  
J. B. CLAIBORNE ◽  
NORBERT HEISLER

Acid-base balance and ion transfers were studied in the carp, Cyprinus carpio L., during and after 48 h of exposure to environmental hypercapnia (PCOCO27.5 Torr). Plasma pH, PCOCO2, [HCO3−], and net transfers of HCO3−, NH4+, Cl− and Na+ between the fish and the environmental water were measured periodically throughout the experiment. Over the first 8 h of hypercapnia, plasma PCOCO2 increased by 7.6 Torr with a concurrent decrease in plasma pH of 0.28 units. Plasma [HCO3−] was slowly elevated from about 14 to 22 mM after 48 h, at which point 50% of the pH depression expected at constant bicarbonate concentration had been compensated. The net amount of H+ transferred to the water was 3.3 mmol kg−1 fish, representing a 115% increase in the rate of cumulative H+ efflux, and inducing an elevation of both intracellular and extracellular [HCO3−]. Cl− transfer was reversed from a net uptake to a net efflux, while net Na+ influx was increased slightly. Following hypercapnia, plasma pH returned to control values within 1 h, while the plasma [HCO3−], which was elevated during hypercapnia, fell continuously to reattain pre-hypercapnic control values after 20 h. The [HCO3−] decrease was due to the net gain of H+ ions from the water during this period. Cl− transfer returned to a net uptake, while the original Na+ influx was reversed to a net loss. Acid-base regulatory responses in the carp are qualitatively similar to those observed in other fish, though the time required for compensatory pH adjustment is longer. It is concluded that alterations in the rates of Cl−/HCO3− and Na+/H+ exchanges during hypercapnia and Na+/H+ exchange following hypercapnia, play a significant role in the compensation of respiratory acid-base disturbances in these animals.


2014 ◽  
Vol 84 (3-4) ◽  
pp. 0206-0217 ◽  
Author(s):  
Seyedeh-Elaheh Shariati-Bafghi ◽  
Elaheh Nosrat-Mirshekarlou ◽  
Mohsen Karamati ◽  
Bahram Rashidkhani

Findings of studies on the link between dietary acid-base balance and bone mass are relatively mixed. We examined the association between dietary acid-base balance and bone mineral density (BMD) in a sample of Iranian women, hypothesizing that a higher dietary acidity would be inversely associated with BMD, even when dietary calcium intake is adequate. In this cross-sectional study, lumbar spine and femoral neck BMDs of 151 postmenopausal women aged 50 - 85 years were measured using dual-energy x-ray absorptiometry. Dietary intakes were assessed using a validated food frequency questionnaire. Renal net acid excretion (RNAE), an estimate of acid-base balance, was then calculated indirectly from the diet using the formulae of Remer (based on dietary intakes of protein, phosphorus, potassium, and magnesium; RNAERemer) and Frassetto (based on dietary intakes of protein and potassium; RNAEFrassetto), and was energy adjusted by the residual method. After adjusting for potential confounders, multivariable adjusted means of the lumbar spine BMD of women in the highest tertiles of RNAERemer and RNAEFrassetto were significantly lower than those in the lowest tertiles (for RNAERemer: mean difference -0.084 g/cm2; P=0.007 and for RNAEFrassetto: mean difference - 0.088 g/cm2; P=0.004). Similar results were observed in a subgroup analysis of subjects with dietary calcium intake of >800 mg/day. In conclusion, a higher RNAE (i. e. more dietary acidity), which is associated with greater intake of acid-generating foods and lower intake of alkali-generating foods, may be involved in deteriorating the bone health of postmenopausal Iranian women, even in the context of adequate dietary calcium intake.


2016 ◽  
Vol 24 (3) ◽  
pp. 116-121
Author(s):  
김지용 ◽  
남상욱 ◽  
김영미 ◽  
이윤진 ◽  
이훈상 ◽  
...  

1932 ◽  
Vol 98 (1) ◽  
pp. 253-260 ◽  
Author(s):  
Victor C. Myers ◽  
Edward Muntwyler ◽  
Arthur H. Bill

1935 ◽  
Vol 112 (1) ◽  
pp. 239-262
Author(s):  
Nathan W. Shock ◽  
A. Baird Hastings

Sign in / Sign up

Export Citation Format

Share Document