adaptive plasticity
Recently Published Documents


TOTAL DOCUMENTS

441
(FIVE YEARS 134)

H-INDEX

58
(FIVE YEARS 8)

2022 ◽  
Author(s):  
Ondrej Kucera ◽  
Jeremie Gaillard ◽  
Christophe Guerin ◽  
Manuel Thery ◽  
Laurent Blanchoin

Active cytoskeletal materials in vitro demonstrate self-organising properties similar to those observed in their counterparts in cells. However, the search to emulate phenomena observed in the living matter has fallen short of producing a cytoskeletal network that would be structurally stable yet possessing adaptive plasticity. Here, we address this challenge by combining cytoskeletal polymers in a composite, where self-assembling microtubules and actin filaments collectively self-organise due to the activity of microtubules-percolating molecular motors. We demonstrate that microtubules spatially organise actin filaments that in turn guide microtubules. The two networks align in an ordered fashion using this feedback loop. In this composite, actin filaments can act as structural memory and, depending on the concentration of the components, microtubules either write this memory or get guided by it. The system is sensitive to external stimuli suggesting possible autoregulatory behaviour in changing mechanochemical environment. We thus establish artificial active actin-microtubule composite as a system demonstrating architectural stability and plasticity.


BMC Biology ◽  
2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Ben Bar-Sadeh ◽  
Or E. Amichai ◽  
Lilach Pnueli ◽  
Khurshida Begum ◽  
Gregory Leeman ◽  
...  

Abstract Background Women facing increased energetic demands in childhood commonly have altered adult ovarian activity and shorter reproductive lifespan, possibly comprising a strategy to optimize reproductive success. Here, we sought to understand the mechanisms of early-life programming of reproductive function, by integrating analysis of reproductive tissues in an appropriate mouse model with methylation analysis of proxy tissue DNA in a well-characterized population of Bangladeshi migrants in the UK. Bangladeshi women whose childhood was in Bangladesh were found to have later pubertal onset and lower age-matched ovarian reserve than Bangladeshi women who grew-up in England. Subsequently, we aimed to explore the potential relevance to the altered reproductive phenotype of one of the genes that emerged from the screens. Results Of the genes associated with differential methylation in the Bangladeshi women whose childhood was in Bangladesh as compared to Bangladeshi women who grew up in the UK, 13 correlated with altered expression of the orthologous gene in the mouse model ovaries. These mice had delayed pubertal onset and a smaller ovarian reserve compared to controls. The most relevant of these genes for reproductive function appeared to be SRD5A1, which encodes the steroidogenic enzyme 5α reductase-1. SRD5A1 was more methylated at the same transcriptional enhancer in mice ovaries as in the women’s buccal DNA, and its expression was lower in the hypothalamus of the mice as well, suggesting a possible role in the central control of reproduction. The expression of Kiss1 and Gnrh was also lower in these mice compared to controls, and inhibition of 5α reductase-1 reduced Kiss1 and Gnrh mRNA levels and blocked GnRH release in GnRH neuronal cell cultures. Crucially, we show that inhibition of this enzyme in female mice in vivo delayed pubertal onset. Conclusions SRD5A1/5α reductase-1 responds epigenetically to the environment and its downregulation appears to alter the reproductive phenotype. These findings help to explain diversity in reproductive characteristics and how they are shaped by early-life environment and reveal novel pathways that might be targeted to mitigate health issues caused by life-history trade-offs.


2022 ◽  
Author(s):  
José Correa ◽  
Johannes A. Postma ◽  
Tobias Wojciechowski

Abstract Aims Soil compaction is a major yield-reducing factor worldwide and imposes physico-chemical constraints to plant growth and development. Facing limitations, roots can adapt and compensate for loss of functioning through their plasticity. Being primarily a belowground challenge, tolerance to soil compaction needs to be associated with root phenotype and plasticity. It is therefore of importance to distinguish between size-related apparent and size-independent adaptive plasticity. We determined the above- and belowground plasticity of sorghum genotypes varying in overall plant size. Methods We quantified plasticity as the degree response (adaptive and apparent plasticity) to soil compaction and conducted two experiments with sorghum and two soil density levels (1.4 and 1.8 Mg m−3). First, we quantified the shoot biomass plasticity of 28 sorghum genotypes. Second, we studied the root plasticity of six genotypes varying in shoot size and tolerance to soil compaction. Results Plasticity was correlated with plant biomass with larger genotypes responding earlier and more intensely. Soil compaction affected roots more than shoots and plasticity was expressed foremost in nodal root number and fine root length. Impeded plants produced 35 and 47% less root mass and length, respectively. Conclusions Plasticity to soil compaction varies among genotypes, but less-sensitive lines are in general smaller-sized genotypes. The association between tolerance and plant biomass may pose challenges to crop production; however, vigorous genotypes with unresponsive shoots to soil compaction do exist. Maintaining shoot growth relatively stable while the root modifies its structure can be an important adaptation mechanism to soil compaction.


Author(s):  
Carlos Granda Tandazo

Este trabajo de investigación parte de la premisa de que los territorios urbanos tienen una identidad cultural subyacente y distintiva; que cuenta además con ciertas potencialidades y recursos que pueden generarle posibilidades concretas de desarrollo. Parte de la certeza de que un territorio no puede reinventarse de cero, como sí podría hacerlo un producto/servicio si es que cuenta con recursos suficientes. Los territorios responden a una identidad en constante evolución, dotada de plasticidad adaptativa que se conforma de acuerdo a la acción de sus ciudadanos, la historia que los define, el impacto de los cambios sociales en sus rasgos singulares y su capacidad de adaptación e innovación frente a las nuevas condicionantes de orden mundial. El objeto de la investigación considera distintos enfoques sobre planificación y desarrollo económico, así como el papel de los gobiernos locales en la gestión y desarrollo de las ciudades, enfocándose en aquellas de países en desarrollo. A lo largo del trabajo se considera que las ciudades y las regiones se ven abocadas a gestionar directamente los recursos para satisfacer eficientemente las necesidades de su población. En este contexto, se analiza y propone la concepción, construcción y desarrollo de una marca de ciudad (place branding) o marca de destino (destination branding), que represente y proyecte a la ciudad, a la vez que se constituya en una manifestación del poder comunicativo del espacio, cuya gestión de imagen, resulta decisiva como generadora de recursos, facilitadora de bienestar para sus pobladores, así como para su crecimiento y desarrollo sustentable a largo plazo. Abstract This research work is started from the premise that urban territories have an underlying and distinctive cultural identity; that it also has certain potentialities and resources that can generate concrete possibilities for development. It starts from the certainty that a territory cannot reinvent itself from scratch, as a product/service could if it has sufficient resources. The territories respond to an identity in constant evolution, endowed with adaptive plasticity that is shaped according to the action of its citizens, the history that defines them, the impact of social changes on their unique features and their capacity for adaptation and innovation in the face of the new conditions of world order. The object of the research considers different approaches to planning and economic development, as well as the role of local governments in the management and development of cities, focusing on those in developing countries. Throughout the work, it is considered that cities and regions are forced to directly manage resources to efficiently satisfy the needs of their population. In this context, the conception, construction and development of a city brand (place branding) or destination brand (destination branding), is analyzed and proposed, which represents and project to the city, at the same time be constituted in a manifestation of the communicative power of the space, whose image management is decisive as a generator of resources, facilitator of well-being for its inhabitants, as well as for their growth and long-term sustainable development.


2021 ◽  
Vol 11 (12) ◽  
pp. 1551
Author(s):  
Jinuk Kim ◽  
Gihyoun Lee ◽  
Jungsoo Lee ◽  
Yun-Hee Kim

In the elderly, walking while simultaneously engaging in other activities becomes more difficult. This study aimed to examine the changes in cortical activity during walking with aging. We try to reveal the effects of an additional task and increased walking speed on cortical activation in the young-old and the old-old elderly. Twenty-seven young-old (70.2 ± 3.0 years) and 23 old-old (78.0 ± 2.3 years) participated in this study. Each subject completed four walking tasks on the treadmill, a 2 × 2 design; two single-task (ST) walking conditions with self-selected walking speed (SSWS) and fast walking speed (FWS), and two dual-task (DT) walking conditions with SSWS and FWS. Functional near-infrared spectroscopy was applied for measurement of cerebral oxyhemoglobin (oxyHb) concentration during walking. Cortical activities were increased during DT conditions compared with ST conditions but decreased during the FWS compared with the SSWS on the primary leg motor cortex, supplementary motor area, and dorsolateral prefrontal cortex in both the young-old and the old-old. These oxyHb concentration changes were significantly less prominent in the old-old than in the young-old. This study demonstrated that changes in cortical activity during dual-task walking are lower in the old-old than in the young-old, reflecting the reduced adaptive plasticity with severe aging.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Miguel Brun-Usan ◽  
Alfredo Rago ◽  
Christoph Thies ◽  
Tobias Uller ◽  
Richard A. Watson

Abstract Background Biological evolution exhibits an extraordinary capability to adapt organisms to their environments. The explanation for this often takes for granted that random genetic variation produces at least some beneficial phenotypic variation in which natural selection can act. Such genetic evolvability could itself be a product of evolution, but it is widely acknowledged that the immediate selective gains of evolvability are small on short timescales. So how do biological systems come to exhibit such extraordinary capacity to evolve? One suggestion is that adaptive phenotypic plasticity makes genetic evolution find adaptations faster. However, the need to explain the origin of adaptive plasticity puts genetic evolution back in the driving seat, and genetic evolvability remains unexplained. Results To better understand the interaction between plasticity and genetic evolvability, we simulate the evolution of phenotypes produced by gene-regulation network-based models of development. First, we show that the phenotypic variation resulting from genetic and environmental perturbation are highly concordant. This is because phenotypic variation, regardless of its cause, occurs within the relatively specific space of possibilities allowed by development. Second, we show that selection for genetic evolvability results in the evolution of adaptive plasticity and vice versa. This linkage is essentially symmetric but, unlike genetic evolvability, the selective gains of plasticity are often substantial on short, including within-lifetime, timescales. Accordingly, we show that selection for phenotypic plasticity can be effective in promoting the evolution of high genetic evolvability. Conclusions Without overlooking the fact that adaptive plasticity is itself a product of genetic evolution, we show how past selection for plasticity can exercise a disproportionate effect on genetic evolvability and, in turn, influence the course of adaptive evolution.


Pathogens ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1509
Author(s):  
Clara Bouyx ◽  
Marion Schiavone ◽  
Jean Marie François

The yeast Saccharomyces cerevisiae has a remarkable ability to adapt its lifestyle to fluctuating or hostile environmental conditions. This adaptation most often involves morphological changes such as pseudofilaments, biofilm formation, or cell aggregation in the form of flocs. A prerequisite for these phenotypic changes is the ability to self-adhere and to adhere to abiotic surfaces. This ability is conferred by specialized surface proteins called flocculins, which are encoded by the FLO genes family in this yeast species. This mini-review focuses on the flocculin encoded by FLO11, which differs significantly from other flocculins in domain sequence and mode of genetic and epigenetic regulation, giving it an impressive plasticity that enables yeast cells to swiftly adapt to hostile environments or into new ecological niches. Furthermore, the common features of Flo11p with those of adhesins from pathogenic yeasts make FLO11 a good model to study the molecular mechanism underlying cell adhesion and biofilm formation, which are part of the initial step leading to fungal infections.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Ao Li ◽  
He Dai ◽  
Ximing Guo ◽  
Ziyan Zhang ◽  
Kexin Zhang ◽  
...  

AbstractUnderstanding the roles of genetic divergence and phenotypic plasticity in adaptation is central to evolutionary biology and important for assessing adaptive potential of species under climate change. Analysis of a chromosome-level assembly and resequencing of individuals across wide latitude distribution in the estuarine oyster (Crassostrea ariakensis) revealed unexpectedly low genomic diversity and population structures shaped by historical glaciation, geological events and oceanographic forces. Strong selection signals were detected in genes responding to temperature and salinity stress, especially of the expanded solute carrier families, highlighting the importance of gene expansion in environmental adaptation. Genes exhibiting high plasticity showed strong selection in upstream regulatory regions that modulate transcription, indicating selection favoring plasticity. Our findings suggest that genomic variation and population structure in marine bivalves are heavily influenced by climate history and physical forces, and gene expansion and selection may enhance phenotypic plasticity that is critical for the adaptation to rapidly changing environments.


2021 ◽  
Author(s):  
Kathryn R Taylor ◽  
Tara Barron ◽  
Helena Zhang ◽  
Alexa C Hui ◽  
Griffin G Hartmann ◽  
...  

The nervous system plays an increasingly appreciated role in the regulation of cancer. In malignant gliomas, neuronal activity drives tumor progression not only through paracrine signaling factors such as neuroligin-3 and brain-derived neurotrophic factor (BDNF), but also through electrophysiologically functional neuron-to-glioma synapses. Malignant synapses are mediated by calcium-permeable AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid) receptors in both pediatric and adult high-grade gliomas, and consequent depolarization of the glioma cell membrane drives tumor proliferation. The nervous system exhibits plasticity of both synaptic connectivity and synaptic strength, contributing to neural circuit form and functions. In health, one factor that promotes plasticity of synaptic connectivity and strength is activity-regulated secretion of the neurotrophin BDNF. Here, we show that malignant synapses exhibit similar plasticity regulated by BDNF-TrkB (tropomyosin receptor kinase B) signaling. Signaling through the receptor TrkB, BDNF promotes AMPA receptor trafficking to the glioma cell membrane, resulting in increased amplitude of glutamate-evoked currents in the malignant cells. This potentiation of malignant synaptic strength shares mechanistic features with the long-term potentiation (LTP) that is thought to contribute to memory and learning in the healthy brain. BDNF-TrkB signaling also regulates the number of neuron-to-glioma synapses. Abrogation of activity-regulated BDNF secretion from the brain microenvironment or loss of TrkB in human glioma cells exerts growth inhibitory effects in vivo and in neuron:glioma co-cultures that cannot be explained by classical growth factor signaling alone. Blocking TrkB genetically or pharmacologically abrogates these effects of BDNF on glioma synapses and substantially prolongs survival in xenograft models of pediatric glioblastoma and diffuse intrinsic pontine glioma (DIPG). Taken together, these findings indicate that BDNF-TrkB signaling promotes malignant synaptic plasticity and augments tumor progression.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mohd. Kamran Khan ◽  
Anamika Pandey ◽  
Mehmet Hamurcu ◽  
Zuhal Zeynep Avsaroglu ◽  
Merve Ozbek ◽  
...  

Boron (B) is an important micronutrient required for the normal growth and development of plants. However, its excess in the soil causes severe damage to plant tissues, which affects the final yield. Wheat, one of the main staple crops, has been reported to be largely affected by B toxicity stress in arid and semi-arid regions of the world. The prevalence of B toxicity stress can be addressed by utilizing wild wheat genotypes with a variant level of stress tolerance. Wild wheat relatives have been identified as a prominent source of several abiotic stress-tolerant genes. However, Aegilops species in the tertiary gene pool of wheat have not been well exploited as a source of B toxicity tolerance. This study explores the root and shoot growth, proline induction, and extent of lipid peroxidation in 19 Aegilops accessions comprising 6 different species and the B-tolerant check wheat cultivar Bolal 2973 grown under Control (3.1 μM B), toxic (1 mM B), and highly toxic (10 mM B) B stress treatment. B toxicity stress had a more decisive impact on growth parameters as compared to the malondialdehyde (MDA) and proline content. The obtained results suggested that even the genotypes with high shoot B (SB) accumulation can be tolerant to B toxicity stress, and the mechanism of B redistribution in leaves should be studied in detail. It has been proposed that the studied Aegilops accessions can be potentially used for genetically improving the B toxicity-tolerance trait due to a high level of variation in the response toward high B toxicity. Though a number of accessions showed suppression in the root and shoot growth, very few accessions with stress adaptive plasticity to B toxicity stress leading to an improvement of shoot growth parameters could be determined. The two accessions, Aegilops biuncialis accession TGB 026219 and Aegilops columnaris accession TGB 000107, were identified as the potential genotypes with B toxicity stress tolerance and can be utilized for developing a pre-breeding material in B tolerance-based breeding programs.


Sign in / Sign up

Export Citation Format

Share Document