Sphingosine increases inositol trisphosphate in rat parotid acinar cells by a mechanism that is independent of protein kinase C but dependent on extracellular calcium

Cell Calcium ◽  
1990 ◽  
Vol 11 (7) ◽  
pp. 469-475 ◽  
Author(s):  
H. Sugiya ◽  
S. Furuyama
1988 ◽  
Vol 253 (2) ◽  
pp. 459-466 ◽  
Author(s):  
H Sugiya ◽  
J F Obie ◽  
J W Putney

In rat parotid acinar cells prelabelled with [3H]inositol, substance P (100 nM) induced the formation of [3H]inositol 1,4,5-trisphosphate [Ins(1,4,5)P3]. Ins(1,4,5)P3 reached a maximum 7 s after substance P stimulation, and thereafter decreased and reached a stable value at 60 s. When the cells were exposed to substance P for 10, 30, 60, or 300 s, washed, and re-exposed to this peptide, the formation of [3H]inositol trisphosphate (InsP3) was attenuated in a time-dependent manner. In the cells pretreated as described above, the number of [3H]substance-P-binding sites (Bmax) was also decreased. Possible role(s) of Ca2+ and protein kinase (protein kinase C) control mechanisms in regulating substance P responses were investigated. Desensitization of substance P-induced InsP3 was not affected by the Ca2+ ionophore ionomycin, nor was it dependent on Ca2+ mobilization. On the other hand, in the presence of 4 beta-phorbol 12,13-dibutyrate (PDBu) and 12-O-tetradecanoyl-4 beta-phorbol 13-acetate, known activators of protein kinase C, substance P-induced InsP3 formation was inhibited. However, PDBu had no effect on [3H]substance P binding, whether present during the assay or when cells were pretreated. The persistent desensitization of InsP3 formation induced by substance P was not affected by PDBu. These results suggest that the persistent desensitization of InsP3 formation induced by substance P is a homologous process involving down-regulation of the substance P receptor; the mechanism does not appear to involve, or to be affected by, the Ca2+ or protein kinase C signalling systems. Protein kinase C activation can, however, inhibit substance P-induced InsP3 formation, which may indicate the presence of a negative-feedback control on the substance P pathway.


2009 ◽  
Vol 56 (Supplement) ◽  
pp. 368-370 ◽  
Author(s):  
Hiroshi Sugiya ◽  
Keitaro Satoh ◽  
Miwako Matsuki-Fukushima ◽  
Bing Qi ◽  
Ming-Yu Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document