Protein Kinase
Recently Published Documents


TOTAL DOCUMENTS

68521
(FIVE YEARS 11361)

H-INDEX

400
(FIVE YEARS 62)

2021 ◽  
Vol 176 ◽  
pp. 298-311
Author(s):  
Xiaorong Zhang ◽  
Yun Jiang ◽  
Jiajie Mao ◽  
Xuekun Ren ◽  
Yinghui Ji ◽  
...  

2021 ◽  
Vol 10 (2) ◽  
pp. 396-401
Author(s):  
Natalia Danayati

Pendahuluan: Irisin merupakan miokin baru yang menghubungkan aktivitas fisik yang berhubungan dengan peningkatan kinerja metabolisme dan berkaitanan dengan pencoklatan jaringan adiposa putih menjadi coklat. Tujuan: Mengetahui pengaruh irisin pada pencoklatan lemak putih. Metode: Menggunakan studi literatur dari sumber ilmiah dengan meringkas dari publikasi dan membandingkan hasil yang disajikan. Hasil: Irisin yang disekresikan dari otot, akan menstimulasi ekspresi dari uncoupling protein 1 (UCP1) dalam adiposit yang menyebabkan pencoklatan jaringan adiposa putih melalui p38 mitogen-activated protein kinase (MAPK) dan melalui extracellular-signal regulated kinase (ERK). Kesimpulan: Irisin yang disekresikan otot rangka akan mengekspresikan UPC-1 di jaringan adiposa yang menyebabkan jaringan adiposa putih menjadi coklat dan peningkatan aktivitas thermogenesis.


2021 ◽  
Vol 12 (10) ◽  
pp. 1704-1718
Author(s):  
Pamela Gaitán-González ◽  
Rommel Sánchez-Hernández ◽  
José-Antonio Arias-Montaño ◽  
Angélica Rueda

2021 ◽  
Vol 15 ◽  
Author(s):  
Ingar Olsen

“Chronic” periodontitis and its keystone pathogen Porphyromonas gingivalis have repeatedly been associated with Alzheimer’s disease (AD). Pathological hallmarks in AD are brain accumulations of amyloid-beta and neurofibrillary tangles consisting of aggregated and hyperphosphorylated tau. In addition, neuroinflammation induced by P. gingivalis has increasingly been recognized as a factor in the pathogenesis of AD. The present mini-review discusses possible mechanisms for the induction of neuroinflammation by P. gingivalis in AD, involving factors such as pro-inflammatory mediators, amyloid-beta, tau, microglia, cathepsin B, and protein kinase R. Inflammagens of P. gingivalis such as lipopolysaccharide and gingipains are also discussed.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6056
Author(s):  
Tae Wook Lee ◽  
Gyeong Won Lee ◽  
Seonyeong An ◽  
Keum-Yong Seong ◽  
Jong Soo Lee ◽  
...  

With increasing demands on long-term storage of cells, cryopreservation of cells is gaining more importance in cell-based research and applications. Dimethyl sulfoxide (DMSO) is a commonly used chemical cryoprotectant, providing increased cell survival during the freezing process. However, its use is limited in clinical applications due to its low biocompatibility above cryogenic temperatures. Herein, we present a new approach for reducing the use of DMSO in cryopreservation by using biodegradable hyaluronic acids (HAs). By adding HAs into cryoprotectant media containing a low concentration of DMSO, higher cell viability and cell proliferation rate were observed upon thawing after cryopreservation. The HA-supplemented cryopreservation media did not reduce the size of the ice crystal, which significantly influenced cell viability during cell freezing, but decreased the Ras homolog family member A (RhoA)/Rho-associated protein kinase (ROCK) signaling pathway related to apoptosis. The cell-interactive cryoprotectants containing HA can be applied to the development of a new cryoprotectant that reduces the adverse effect of DMSO.


2021 ◽  
Vol 22 (20) ◽  
pp. 11084
Author(s):  
Joon-Hong Jun ◽  
Ji-Hyun Baek ◽  
Song-Yi Yang ◽  
Hyung-Woo Moon ◽  
Hye-Jin Kim ◽  
...  

As members of the MAPK family, c-Jun-N-terminal kinases (JNKs) regulate the biological processes of apoptosis. In particular, the isoform JNK3 is expressed explicitly in the brain at high levels and is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). In this study, we prepared a series of five 6-dihydroxy-1H-benzo[d]imidazoles as JNK3 inhibitors and found them have potential as neuroprotective agents. Following a previous lead scaffold, benzimidazole moiety was modified with various aryl groups and hydroxylation, and the resulting compounds exhibited JNK3 inhibitory activity with improved potency and selectivity. Out of 37 analogues synthesized, (S)-cyclopropyl(3-((4-(2-(2,3-dihydrobenzo[b][1,4]dioxin -6-yl)-5,6-dihydroxy-1H-benzo[d]imidazol-1-yl)pyrimidin-2-yl)amino) piperidin-1-yl)methanone (35b) demonstrated the highest JNK3 inhibition (IC50 = 9.7 nM), as well as neuroprotective effects against Aβ-induced neuronal cell death. As a protein kinase inhibitor, it also showed excellent selectivity over other protein kinases including isoforms JNK1 (>1000 fold) and JNK2 (–10 fold).


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2173
Author(s):  
Joo Hyuk Cho ◽  
Sung-Chur Sim ◽  
Kyung-Nam Kim

Soil salinity is one of the major environmental stresses that restrict the growth and development of tomato (Solanum lycopersicum L.) worldwide. In Arabidopsis, the calcium signaling pathway mediated by calcineurin B-like protein 4 (CBL4) and CBL-interacting protein kinase 24 (CIPK24) plays a critical role in salt stress response. In this study, we identified and isolated two tomato genes similar to the Arabidopsis genes, designated as SlCBL4 and SlCIPK24, respectively. Bimolecular fluorescence complementation (BiFC) and pull-down assays indicated that SlCBL4 can physically interact with SlCIPK24 at the plasma membrane of plant cells in a Ca2+-dependent manner. Overexpression of SlCBL4 or superactive SlCIPK24 mutant (SlCIPK24M) conferred salt tolerance to transgenic tomato (cv. Moneymaker) plants. In particular, the SlCIPK24M-overexpression lines displayed dramatically enhanced tolerance to high salinity. It is notable that the transgenic plants retained higher contents of Na+ and K+ in the roots compared to the wild-type tomato under salt stress. Taken together, our findings clearly suggest that SlCBL4 and SlCIPK24 are functional orthologs of the Arabidopsis counterpart genes, which can be used or engineered to produce salt-tolerant tomato plants.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Ram Hari Pokhrel ◽  
Suman Acharya ◽  
Jae-Hee Ahn ◽  
Ye Gu ◽  
Mahesh Pandit ◽  
...  

Abstract Background AMP-activated protein kinase (AMPK) is a metabolic sensor that maintains energy homeostasis. AMPK functions as a tumor suppressor in different cancers; however, its role in regulating antitumor immunity, particularly the function of regulatory T cells (Tregs), is poorly defined. Methods AMPKα1fl/flFoxp3YFP-Cre, Foxp3YFP-Cre, Rag1−/−, and C57BL/6 J mice were used for our research. Flow cytometry and cell sorting, western blotting, immuno-precipitation, immuno-fluorescence, glycolysis assay, and qRT-PCR were used to investigate the role of AMPK in suppressing programmed cell death 1 (PD-1) expression and for mechanistic investigation. Results The deletion of the AMPKα1 subunit in Tregs accelerates tumor growth by increasing the expression of PD-1. Metabolically, loss of AMPK in Tregs promotes glycolysis and the expression of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR), a key enzyme of the mevalonate pathway. Mechanistically, AMPK activates the p38 mitogen-activated protein kinase (MAPK) that phosphorylates glycogen synthase kinase-3β (GSK-3β), inhibiting the expression of PD-1 in Tregs. Conclusion Our study identified an AMPK regulatory mechanism of PD-1 expression via the HMGCR/p38 MAPK/GSK3β signaling pathway. We propose that the AMPK activator can display synergic antitumor effect in murine tumor models, supporting their potential clinical use when combined with anti-PD-1 antibody, anti-CTLA-4 antibody, or a HMGCR inhibitor.


2021 ◽  
Vol 11 ◽  
Author(s):  
Sabrina Manni ◽  
Anna Fregnani ◽  
Laura Quotti Tubi ◽  
Zaira Spinello ◽  
Marco Carraro ◽  
...  

Mantle Cell Lymphoma (MCL) is still an incurable B-cell malignancy characterized by poor prognosis and frequent relapses. B Cell Receptor (BCR) signaling inhibitors, in particular of the kinases BTK and PI3Kγ/δ, have demonstrated clinically meaningful anti-proliferative effects in B cell tumors. However, refractoriness to these drugs may develop, portending a dismal prognosis. Protein kinase CK1α is an emerging pro-growth enzyme in B cell malignancies. In multiple myeloma, this kinase sustains β-catenin and AKT-dependent survival and is involved in the activation of NF-κB in B cells. In this study, we analyzed the role of CK1α on MCL cell survival and proliferation, on the regulation of BCR-related BTK, NF-κB, PI3K/AKT signaling cascades and the effects of CK1α chemical inhibition or gene silencing in association with the BTK inhibitor Ibrutinib or the PI3Kγ/δ inhibitor Duvelisib. CK1α was found highly expressed in MCL cells as compared to normal B cells. The inactivation/loss of CK1α caused MCL cell apoptosis and proliferation arrest. CK1α sustained BCR signaling, in particular the NF-κB, AKT and BTK pathways by modulating the phosphorylation of Ser 652 on CARD11, Ser 536 p65 on NF-κB, Ser 473 on AKT, Tyr 223 on BTK, as well as the protein levels. We also provided evidence that CK1α-mediated regulation of CARD11 and BTK likely implicates a physical interaction. The combination of CK1α inhibition with Ibrutinib or Duvelisib synergistically increased cytotoxicity, leading to a further decrease of the activation of BCR signaling pathways. Therefore, CK1α sustains MCL growth through the regulation of BCR-linked survival signaling cascades and protects from Ibrutinib/Duvelisib-induced apoptosis. Thus, CK1α could be considered as a rational molecular target for the treatment of MCL, in association with novel agents.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mitsuhiro Kinoshita ◽  
Atsushi Yamada ◽  
Kiyohito Sasa ◽  
Kaori Ikezaki ◽  
Tatsuo Shirota ◽  
...  

AbstractNephronectin (Npnt) is an extracellular matrix protein and ligand of integrin α8β1 known to promote differentiation of osteoblasts. A search for factors that regulate Npnt gene expression in osteoblasts revealed that phorbol 12-myristate 13-acetate (PMA), which activates protein kinase C (PKC), had a strong effect to suppress that expression. Research was then conducted to elucidate the signaling pathway responsible for regulation of Npnt gene expression by PMA in osteoblasts. Treatment of MC3T3-E1 cells with PMA suppressed cell differentiation and Npnt gene expression. Effects were noted at a low concentration of PMA, and were time- and dose-dependent. Furthermore, treatment with the PKC signal inhibitor Gö6983 inhibited down-regulation of Npnt expression, while transfection with small interfering RNA (siRNA) of PKCα, c-Jun, and c-Fos suppressed that down-regulation. The present results suggest regulation of Npnt gene expression via the PKCα and c-Jun/c-Fos pathway.


Sign in / Sign up

Export Citation Format

Share Document