Fracture toughness of kallax gabbro and specimen size effect

Author(s):  
X. Yi ◽  
Z. Sun ◽  
F. Ouchterlony ◽  
O. Stephansson
Author(s):  
Ludek Stratil ◽  
Filip Siska ◽  
Hynek Hadraba ◽  
Stanislava Fintova ◽  
Tomas Mrna ◽  
...  

The contribution aims to evaluate fracture toughness of the P91 steel in the ductile regime. This steel is broadly used for applications for pressure vessels and piping systems. The J–R curves were obtained using 1T, 0.5T and 0.25T CT specimens at 23 °C and using 0.5T and 0.25T CT specimens up to 600 °C. The energy normalization method for the J–R curve determination according to the ASTM E1820 was used. The resistance to crack propagation shows temperature dependence and the dynamic strain ageing effect with minimum values at 400 °C. Both specimen sizes 0.5T and 0.25T give a similar trend of the temperature dependence of fracture toughness. However, the size effect is observed as fracture toughness decreases with the specimen size. The results obtained are compared with the results of other authors pointing the specimen size effect and the temperature dependence of the steel.


1978 ◽  
pp. 267-272 ◽  
Author(s):  
D. Sunamoto ◽  
M. Satoh ◽  
T. Funada ◽  
M. Tomimatsu

Author(s):  
Tomoki Shinko ◽  
Masato Yamamoto

Abstract A utilization of a miniature compact tension (Mini-C(T)) specimen is expected to enable effective use of limited remaining surveillance specimens for the structural integrity assessment of a Reactor Pressure Vessel (RPV). For developing a direct fracture toughness evaluation method using Mini-C(T) specimen in the upper-shelf temperature range as well as ductile-brittle transition temperature range, this study is aimed to experimentally characterize the Mini-C(T) specimen’s size effect on ductile crack growth resistance and interpolate its mechanism. Mini-C(T) specimen and 0.5T-C(T) specimen were prepared from a Japanese RPV steel SQV2A, and the ductile crack growth tests were conducted on them at room temperature. As a result, the crack growth resistance of Mini-C(T) and 0.5T-C(T) specimens are comparable if the crack extension Δa is less than 0.5 mm. On the other hand, if Δa exceeds 0.5 mm, the crack growth resistance of Mini-C(T) specimen becomes lower than that of 0.5T-C(T) specimen. The measurements of stretch zone width and depth support the fact that the fracture toughness for ductile crack initiation of Mini-C(T) specimen is lower than that of 0.5T-C(T) specimen. From the rotational (crack mouth opening) deformation of Mini-C(T) specimen was measured by simultaneously measuring load-line and front face displacements. The distance between the crack tip and the rotation center of Mini-C(T) specimen is smaller than that of 0.5T-C(T) specimen during the test. Furthermore, The plastic zone in front of the crack tip reaches the rotation center up to the crack extension of Δa = 0.3 mm on Mini-C(T) specimen, indicating that the mechanism of the specimen size effect of Mini-C(T) specimen is likely a plastic constraint due to the influence of the rotation center locating near the crack tip. This suggests that the specimen size effect of Mini-C(T) specimen on ductile crack growth resistance is expected to be corrected by considering an effect of the plastic constraint.


2001 ◽  
Vol 42 (1) ◽  
pp. 52-57 ◽  
Author(s):  
Toshiro Kobayashi ◽  
Shigeki Morita ◽  
Hiroyuki Toda

Author(s):  
Toshiyuki Meshii

This paper summarized our recent studies on the test specimen size (TSS) effects on Jc of a material in the ductile-to-brittle transition temperature (DBTT) region. The validity of the deterministic approach to transfer the fracture toughness Jc obtained with different thickness specimens is demonstrated in these works. Based on the detailed finite element analysis results, it was found that the crack-tip stresses were different at the identical J in the test specimen thickness (TST) effect on Jc observed with both the non-proportional and proportional specimens. And adjusting loads to make the stress level equivalent showed increment in J that was equivalent to the Jc difference due to TST effect on Jc. This was similar with the past result obtained for the planar size effect on Jc (the difference in Jc due to the planar specimen configuration including crack length difference for the same specimen type or the specimen type difference). Thus, it was concluded that all of the TSS effects on Jc could be explained as due to J’s disability to characterize the crack-tip stress field accurately, or in a more general explanation, due to the finite size effect. In addition, the (4δt, σ22c) failure criterion (Dodds et al., 1991) was verified to transfer Jcs obtained for different specimen thicknesses and planar configurations. The critical value σ22c varied for only a few percent. The fact that these critical values were always reached at the specimen mid-plane and the fact that cleavage always initiated at the specimen mid-plane supported the validity of the deterministic approach. Because the (4δt, σ22c) failure criterion requires only “single” set of test data for Jc transfer and because σ22c shows only a few percent scatter, it seems to have a possibility to replace what Weibull stress is expected to do.


Sign in / Sign up

Export Citation Format

Share Document