failure criterion
Recently Published Documents


TOTAL DOCUMENTS

1251
(FIVE YEARS 238)

H-INDEX

55
(FIVE YEARS 11)

Polymers ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 189
Author(s):  
Bin Yang ◽  
Hongjian Wang ◽  
Kunkun Fu ◽  
Chonglei Wang

In the present work, an explicit finite element (FE) model was developed for predicting cutting forces and chip morphologies of polymers from the true stress–strain curve. A dual fracture process was used to simulate the cutting chip formation, incorporating both the shear damage failure criterion and the yield failure criterion, and considering the strain rate effect based on the Johnson–Cook formulation. The frictional behaviour between the cutting tool and specimen was defined by Coulomb’s law. Further, the estimated cutting forces and chip thicknesses at different nominal cutting depths were utilized to determine the fracture toughness of the polymer, using an existing mechanics method. It was found that the fracture toughness, cutting forces, and chip morphologies predicted by the FE model were consistent with the experimental results, which proved that the present FE model could effectively reflect the cutting process. In addition, a parametrical analysis was performed to investigate the effects of cutting depth, rake angle, and friction coefficient on the cutting force and chip formation, which found that, among these parameters, the friction coefficient had the greatest effect on cutting force.


Author(s):  
S. A. Chizhik ◽  
M. A. Zhuravkov ◽  
A. B. Petrovskiy ◽  
V. Ya. Prushak ◽  
D. A. Puzanov

Methodological approaches to the selection of ultimate state criteria and strength characteristics of the repeatedly undermined rock massifs were developed. These approaches were designed to provide parametric support to the geomechanical modelling of the massif stress-strain state and the mining systems of the Starobin potash deposit mine fields planned for the additional mining of the mineral reserves left. It was established that a complex criterion must be used to study the massif ultimate state. Determination of such criterion can be carried out using the developed approaches. The first approach is to select several criteria that evaluate the massif ultimate state by certain types of the massif stress-strain state. These criteria are the following: the criterion of the maximum normal stresses, criterion of the maximum linear strains, the criterion of the maximum shear stresses and the Coulomb–Mohr failure criterion. The second approach is to construct an integrated failure state criterion for materials whose ultimate tensile and compressive stresses differ significantly. In this case, parameters characterizing the type of stress state and properties of the material are introduced. These parameters together determine the destruction character – tear or shear. To describe the rocks behavior in the extreme strength stage of deformation, it is proposed to apply deformation theory of strength using the developed strain failure criterion. When calculating the strength characteristics of the repeatedly undermined rock massif, it is recommended to use a structural attenuation coefficient as the product of several factors, taking into account various types of disturbances in the primary undermined massif and the time factor. The Coulomb–Mohr strength condition is recommended to be used taking into account the composite structural attenuation coefficient. Dependencies have been developed to describe the change in the strength characteristics of rocks in the undermined massif, considering the attenuation coefficient.


Author(s):  
Qiming Zhang ◽  
Shi-Wei Ricky Lee

Abstract Conventional reliability tests for the evaluation of pad cratering resistance are mainly classified into two categories: the board level test and the joint level test. The board level test is to imitate the loading conditions during normal operation. However, this type of test is expensive and not flexible. The joint level test is used extensively in the industry because it has the advantages of lower cost, higher throughput, and more quantitative results. It also allows the elimination of confounding factors such as PCB and component stiffness. Therefore, it is always desirable to predict the board level performance by a joint level test. In order to achieve this objective, the correlation between the joint level and the board level tests must be fully understood. Nevertheless, a precise correlation between the two types of tests for pad cratering evaluation is yet to be defined. This study investigates the pad cratering failure mode for the correlation of critical failure factors between joint and board level tests. An intermediate critical failure factor could be taken as a failure criterion in board level testing for failure detection. For verifying the validity of such a failure criterion, an experimental study should be performed. The 4-point bending test is chosen as the board level test for critical failure factor validation. In addition, an innovative pin shear test method is developed as the joint level test for failure factor detection. Both test methods are assessed by a series of parametric studies with an optimized process to ensure the accuracy of the results. From the results of the experimental study and simulation, the critical failure factor correlation is established between the board level 4-point bending and the joint level pin shear test. Using finite element analysis (FEA), the critical failure strain is identified from the pin shear test model and will be employed as the board level failure criterion. Subsequently the obtained failure criterion is verified by a 4-point bending model. As a result, this indirect correlation method can predict the board level failure with various geometric parameters.


2021 ◽  
Vol 12 (5) ◽  
pp. 965
Author(s):  
Erly Bahsan ◽  
Bunyamin Andreatama ◽  
Widjojo Adi Prakoso ◽  
Budi Susilo Soepandji ◽  
R.R. Dwinanti R. Marthanty

2021 ◽  
Vol 11 (24) ◽  
pp. 11625
Author(s):  
Qingfeng Meng ◽  
Xuyue Hu ◽  
Guanghui Chen ◽  
Peng Li ◽  
Zhi Wang

An analytical approach for the estimating of critical seismic acceleration of rock slopes was proposed in this study. Based on the 3D horn failure model, the critical seismic acceleration coefficient of rock slopes was conducted with the modified Hoek–Brown (MHB) failure criterion in the framework of upper-bound theory for the first time. The nonlinear Hoek–Brown failure criterion is incorporated into the three-dimensional rotational failure mechanism, and a generalized tangent technique is introduced and employed to convert the nonlinear Hoek–Brown failure criterion into a linear criterion. The critical seismic acceleration coefficients obtained from this study were validated by the numerical simulation results based on finite element limit analysis. The agreement showed that the proposed method is effective. Finally, design charts were provided for exceptional cases for practical use in rock engineering.


2021 ◽  
Vol 13 (23) ◽  
pp. 13452
Author(s):  
Kuo-Shih Shao ◽  
An-Jui Li ◽  
Chee-Nan Chen ◽  
Chen-Hsien Chung ◽  
Ching-Fang Lee ◽  
...  

This study presents the case of a landslide triggered by a high groundwater level caused by several days of continuous rainfall in the northeastern region of Taiwan. The slope where this landslide occurred consists of closely jointed and weathered bedrock. By means of finite element limit analysis and the Hoek–Brown failure criterion, this study performed a slope failure simulation similar to the actual landslide and deduced the reasonable value range for the combination of key Hoek–Brown failure criterion parameters through back analyses. The results indicate that the key parameters affecting the bedrock’s slope stability were the geological strength index (GSI) and the disturbance factor (D), whereas the effects of the unconfined compressive strength (σci) were less significant. The results of the back analysis reveal that the suitable D-value range and GSI of closely jointed and weathered sandstone in the northeastern region of Taiwan are 0.8 to 0.9 and 20 to 30, respectively. These back-analyzed value ranges can serve as a reference for broader applications in the preliminary stability analysis of similar rock slopes where it is difficult to perform in situ investigation.


Sign in / Sign up

Export Citation Format

Share Document