Volume 6B: Materials and Fabrication
Latest Publications


TOTAL DOCUMENTS

79
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791857007

Author(s):  
Jack Adams ◽  
Roger C. Hurst ◽  
J. Bryan Borradaile ◽  
Martin R. Bache

The small punch (SP) tensile test, originally developed for assessing the integrity of nuclear containments, has seen a renaissance in recent years with the introduction of a Code of Practice and a standardisation proposal. For nuclear applications, the extremely low volumes of material that are required allows specimens to be manufactured from quasi-destructive scoop samples, surveillance specimens or even previously tested Charpy specimens. The low volume of material also alleviates the health and safety requirements and the cost associated with testing active materials. By assessing the energy absorbed before fracture, it is possible to build an entire SP ductile-brittle transition curve using less material than is required for a single Charpy test. Small punch testing has been performed on SA 508-3 NESC-1 spinning cylinder material to establish ductile-brittle transition data, for comparison to that obtained by conventional Charpy impact test techniques. Multiple SP ductile-brittle transition curves have been constructed, building upon the framework of the existing Code of Practice. Novel geometries and associated machining techniques employed to incorporate notches into the surface of the SP specimen, and also the application of relatively high strain rates have been investigated. Post-test fractography illustrates the influence of both stress raising features and strain rate on small punch fracture behaviour.


Author(s):  
Michael Ford ◽  
Peter James

The need to predict changes in fracture toughness for materials where the tensile properties change through life, such as with irradiation, whilst accounting for geometric constraint effects, such as crack size, are clearly important. Currently one of the most likely approaches by which to develop such ability are through application of local approach models. These approaches appear to be sufficient in predicting lower shelf toughness under high constraint conditions, but may fail when attempting to predict toughness in the transition region or for low constraint geometries when using the same parameters, making predictions impossible. Cleavage toughness predictions in the transition regime that are then extended to low constraint conditions are here made with a stochastic, Monte Carlo implementation of the recently proposed James-Ford-Jivkov model. This implementation is based around the creation of individual initiators following the experimentally observed distribution for specific RPV steel, and determining if these initiators form voids or cause cleavage failure using the model’s improved criterion for particle failure. The model has shown to predict experimentally measured locations of cleavage initiators. Further, initial results from the Monte Carlo implementation of the model predicts the fracture toughness in a large part of the transition region, demonstrates an ability to predict the constraint shift and shows a level of scatter similar to that observed experimentally. All results presented, for a given material, are obtained without changes in the model parameters. This suggests that the model can be used predicatively for assessing toughness changes due to constraint- and temperature-driven plasticity changes.


Author(s):  
Lin Zhang ◽  
Bai An ◽  
Takashi Iijima ◽  
Chris San Marchi ◽  
Brian Somerday

The behaviors of hydrogen transport and hydrogen-assisted cracking in hydrogen-precharged SUS304 austenitic stainless steel sheets in a temperature range from 177 to 298 K are investigated by a combined tensile and hydrogen release experiment as well as magnetic force microscopy (MFM) based on atomic force microscopy (AFM). It is observed that the hydrogen embrittlement increases with decreasing temperature, reaches a maximum at around 218 K, and then decreases with further temperature decrease. The hydrogen release rate increases with increasing strain until fracture at room temperature but remains near zero level at and below 218 K except for some small distinct release peaks. The MFM observations reveal that fracture occurs at phase boundaries along slip planes at room temperature and twin boundaries at 218 K. The role of strain-induced martensite in the hydrogen transport and hydrogen embrittlement is discussed.


Author(s):  
Kazuhiro Kimura ◽  
Kota Sawada ◽  
Hideaki Kushima

Creep deformation property of Grade T91 steels over a range of temperatures from 550 to 625°C was analyzed by means of the empirical creep equation reported in the previous study [1]. The creep equation consists of four time dependent terms and one constant and time to rupture is estimated as a time to total strain of 10%. Accuracy of the creep equation to represent creep curve and to predict time to rupture and minimum creep rate was indicated. Times to minimum creep rate, total strain of 1%, initiation of tertiary creep and rupture were evaluated by the creep equation. Stress dependence of strains at minimum creep rate and the initiation of tertiary creep were analyzed. Contribution of four time dependent terms to the strains at minimum creep rate, total strain of 1% and initiation of tertiary creep was investigated. Three parameters to determine a temperature and time-dependent stress intensity limit, St, were compared and a dominant factor of St was examined. Heat-to-heat variation of the creep deformation property was investigated on two heats of T91 steels contain low and high nickel concentrations.


Author(s):  
Mahyar Asadi ◽  
Ghazi Alsoruji

Weld sequence optimization, which is determining the best (and worst) welding sequence for welding work pieces, is a very common problem in welding design. The solution for such a combinatorial problem is limited by available resources. Although there are fast simulation models that support sequencing design, still it takes long because of many possible combinations, e.g. millions in a welded structure involving 10 passes. It is not feasible to choose the optimal sequence by evaluating all possible combinations, therefore this paper employs surrogate modeling that partially explores the design space and constructs an approximation model from some combinations of solutions of the expensive simulation model to mimic the behavior of the simulation model as closely as possible but at a much lower computational time and cost. This surrogate model, then, could be used to approximate the behavior of the other combinations and to find the best (and worst) sequence in terms of distortion. The technique is developed and tested on a simple panel structure with 4 weld passes, but essentially can be generalized to many weld passes. A comparison between the results of the surrogate model and the full transient FEM analysis all possible combinations shows the accuracy of the algorithm/model.


Author(s):  
Sergio Cicero ◽  
Tiberio Garcia ◽  
Virginia Madrazo

This paper presents the Notch-Master Curve as a model for the prediction of the apparent fracture toughness of ferritic steels in notched conditions and operating at temperatures corresponding to their ductile-to-brittle transition zone. The Notch-Master Curve combines the Master Curve of the material in cracked conditions and the notch corrections provided by the Theory of Critical Distances. In order to validate the model, the fracture resistance results obtained in fracture tests performed on notched CT and SENB specimens are presented. The results gathered here cover four ferritic steels (S275JR, S355J2, S460M and S690Q), three different notch radii (0.25 mm, 0.50 mm and 2.0 mm) and three different temperatures within the corresponding ductile-to-brittle transition zone. The results demonstrate that the Notch Master Curve provides good predictions of the fracture resistance in notched conditions for the four materials analyzed.


Author(s):  
Trevor G. Hicks ◽  
William R. Mabe ◽  
Jason R. Miller ◽  
John V. Mullen

Residual stresses within stainless steel pipe welds may cause or exacerbate in-service cracking. Significant investigative efforts have been devoted to the examination of piping residual stresses in large diameter piping using both finite element modeling and experimental techniques, but limited information is available for small diameter piping. Even less information is available for small diameter piping welds which have been repaired or re-worked during initial fabrication. This investigation used both experimental methods and analytical modeling to assess the impact of repair welding during initial fabrication on the residual stresses along the inner diameter (ID) of small diameter pipe specimens. The investigation showed that tensile axial residual stresses were located in the heat affected zone (HAZ) along the ID of the pipe specimens adjacent to regions which were excavated and re-welded. Such repair welds were also shown to markedly increase the magnitude of the tensile axial residual stresses for weld configurations which otherwise had lower magnitude residual stresses.


Author(s):  
Yu-Ping Yang ◽  
Zhenning Cao ◽  
Jerry Gould ◽  
Tom McGaughy ◽  
Jon Jennings

A Microsoft Excel-based screening tool was developed to allow an engineer with weld process knowledge to predict cooling rate and hardness during welding procedure qualifications to screen a combination of materials and welding process parameters quickly to meet requirements of fabrication and design codes. The material properties for commonly used pipeline steels have been built into a database coupled with the screening tool. The Excel-based tool includes a physics-based laser and arc welding solution which was developed based on Rosenthal’s mathematical equations for a point heat source to predict thermal cycles by inputting welding parameters. A reflecting heat source scheme was adapted to model the boundary conditions and plate thickness effect on cooling rate. The Excel-based tool also includes a microstructure model which was developed based on the Ashby model. The microstructure model can be used to predict the distributions of individual phases such as ferrite, bainite, and martensite along with a hardness map across the weld and heat-affected-zone (HAZ) regions by integrating with the thermal model.


Author(s):  
Joseph A. Ronevich ◽  
Brian P. Somerday ◽  
Chris W. San Marchi ◽  
Dorian K. Balch

Austenitic stainless steels are used in hydrogen environments because of their generally accepted resistance to hydrogen embrittlement; however, hydrogen-assisted cracking can occur depending on the microstructures or composition of the stainless steel. One area that has not been well researched is welds and in particular heat affected zones. The goal of this work was to measure the subcritical cracking susceptibility of hydrogen precharged gas tungsten arc (GTA) welds in forged stainless steels (21Cr-6Ni-9Mn and 304L). Welds were fabricated using 308L filler metal to form 21-6-9/308L and 304L/308L weld rings, and subsequently three-point bend specimens were extracted from the fusion zone and heat affected zone and precharged in high-pressure hydrogen gas. Crack growth resistance curves were measured in air for the hydrogen precharged fusion zones and heat affected zones under rising-displacement loading, revealing significant susceptibility to subcritical cracking. Fracture thresholds of 304L/308L welds were lower than 21-6-9/308L welds which was attributed to higher ferrite fractions in 304L/308L since this phase governed the crack path. Fracture thresholds for the heat affected zone were greater than the fusion zone in 21-6-9/308L which is likely due to negligible ferrite in the heat affected zone. Modifications to the weld joint geometry through use of a single-J design were implemented to allow consistent testing of the heat affected zones by propagating the crack parallel to the fusion zone boundary. Despite low hydrogen diffusivity in the austenitic stainless steels, effects of displacement rates were observed and a critical rate was defined to yield lower-bound fracture thresholds.


Author(s):  
Minh N. Tran ◽  
Ondrej Muránsky ◽  
Michael R. Hill ◽  
Mitchell D. Olson

In an effort to shed light on accuracy and reliability of finite element (FE) weld modeling outputs, the U.S. Nuclear Regulatory Commission (NRC) and the Electric Power Research Institute (EPRI) have been engaged in a program of cooperative research on weld residual stress (WRS) prediction. The current work presents numerical FE simulation of the WRS in a pressurizer surge nozzle full-scale mockup (Phase 2b), as a part of the broader NRC/EPRI program. Sequentially-coupled, thermo-mechanical FE analysis was performed, whereby the numerical solution from the thermal analysis was used as an input in the mechanical analysis. The thermal analysis made use of a dedicated weld modeling tool to accurately calibrate an ellipsoidal Gaussian volumetric heat source. The subsequent mechanical analysis utilized the isotropic and nonlinear kinematic hardening constitutive models to capture cyclic response of the material upon welding. The modeling results were then validated using a number of measurement techniques (deep hole drilling, contour method, slitting, and biaxial mapping). In addition, an effect of the interpass temperature (i.e. 24.5 °C, 150 °C, and 260 °C) on the final prediction of WRS is discussed.


Sign in / Sign up

Export Citation Format

Share Document