Volume 1A: Codes and Standards
Latest Publications


TOTAL DOCUMENTS

74
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791857908

Author(s):  
Kisaburo Azuma ◽  
Yinsheng Li ◽  
Kunio Hasegawa

The interaction of multiple flaws in close proximity to one another may increase the stress intensity factor of the flaw in structures and components. This interaction effect is not distributed uniformly along the crack front. For instance, the strongest interaction is generally observed at the point closest to a neighboring flaw. For this reason, the closest point could show a higher value of the stress intensity factor than all other points in some cases, even if the original value at the point of the single flaw is relatively low. To clarify the condition when the closest point shows the maximum stress intensity factor, we investigated the interaction of two similar elliptical flaws in an infinite model subjected to remote tension loading. The stress intensity factor of the elliptical flaws was obtained by performing finite element analysis of a linear elastic solid. The results indicated that the interaction factors along the crack front can be expressed by a simple empirical formula. Finally, we show the relationship between geometrical features of the flaw and the stress intensity factor at the closest point to a neighboring flaw.


Author(s):  
Nicolas O. Larrosa ◽  
Pablo Lopez-Crespo ◽  
Robert A. Ainsworth

The amount of data requiring detailed analysis from that obtained during in-line inspection (ILI)is reduced by a screening methodology. The methodology uses ILI outputs (dimensions of flaws, orientation and distance from starting point) to generate a visualisation of the pits within the pipeline, a ranking of pits in terms of sphericity (roundness) and depth, to evaluate pit density and generate the models for finite element analysis. The rendering tool allows a clearer view of defects within the pipelines and provides a simplified way to focus on critical pits. For a particular case of in-field data provided by BP, the number of pits in a 12-inch riser of 11 km length was reduced from 1750 obtained to 43, 15 or 4 requiring analysis, depending on the level of conservatism introduced by the analyst. The tool will allow Oil and Gas owners and operators to reduce the immense amount of data obtained during pigging to a much less time-consuming set for flaw assessment.


Author(s):  
Chris Currie ◽  
Andrew Morley ◽  
Norman Platts ◽  
Marius Twite ◽  
Keith Wright

Environmentally assisted fatigue of nuclear plant materials in the Pressurised Water Reactor (PWR) coolant environment is a phenomenon that has been extensively studied over the past 30 years. Methods for accounting for the PWR environment in an ASME III fatigue assessment are presented in NUREG/CR-6909. The deleterious effect of environment is described through a Fen factor dependent upon strain rate, temperature and the dissolved oxygen content of the water. The formulae which describe the Fen are based upon correlations observed in test data predominantly from tests conducted with constant temperature and strain rate (triangular or sawtooth loading). Actual loading histories encountered during service are far more complex, with both strain rate and temperature, and therefore Fen, varying through the cycle. NUREG/CR-6909 recommends a modified rate approach method for accounting for this, whereby the load cycle is broken up into a number of strain increments and then integrated to give the Fen for the cycle. There is a substantial and growing body of data for conditions in which the strain rate or temperature or both changes. The NUREG/CR-6909 modified rate approach does not generally perform well in describing the deleterious effect of environment in these complex conditions. In particular, the modified rate approach does not predict a difference in life when the temperature is varied in-phase or out-of-phase with the strain waveform, or when the slow portion of the strain rate is moved from the top to the bottom of the waveform. This paper presents new data from strain-controlled fatigue endurance testing of two casts of 304L with complex waveforms and temperature cycling. The paper then presents and compares a number of models for integrating the Fen through the cycle, including methods which weight Fen increments depending on position in the strain cycle. It is concluded that greater weighting on the environmental effect in the top of the cycle is necessary to describe the differences in life observed. This is further validated by a review of test data in the wider literature. An improved method is presented to account for the effects of the PWR environment on fatigue lives of austenitic stainless steel materials, which has similarities to the “Weighted K Rate” method previously presented by Rolls-Royce, PVP2016-63497, for environmentally assisted fatigue crack growth.


Author(s):  
Hilda B. Klasky ◽  
B. Richard Bass ◽  
Terry L. Dickson ◽  
Sarma B. Gorti ◽  
Randy K. Nanstad ◽  
...  

The Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasi-laminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop an independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, “Fracture Toughness Criteria for Protection Against Failure,” New York (both 1992 and 2004 versions). That screening assessment of the EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, “Alternative Characterization Rules for Quasi-Laminar Flaws”. Results and conclusions derived from comparisons of the ORNL flaw acceptance assessments of D3/T2 with those from the 2015 EBL Safety Cases are presented in the paper. The ORNL screening analyses identified fewer flaws than EBL that were not compliant with the ASME Section XI (1992) criterion; the EBL criterion imposed additional conservatisms not included in ASME Section XI. Furthermore, ORNL’s application of the updated ASME Section XI (2004) criterion produced only four non-compliant flaws, all due to design-basis loss-of-coolant loading transients. Among the latter, only one flaw remained non-compliant when analyzed using the warm-prestress (WPS) cleavage fracture model typically applied in USA flaw assessments. ORNL’s independent refined analysis of that flaw (#1660, which was also non-compliant in the EBL screening assessments) rendered it compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-dimensional XFEM (eXtended Finite Element Method) approach available in the ABAQUS© finite element code. Taken as a whole, the ORNL-specific results and conclusions confirmed the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16,196 detected flaws.


Author(s):  
Ludek Stratil ◽  
Filip Siska ◽  
Hynek Hadraba ◽  
Stanislava Fintova ◽  
Tomas Mrna ◽  
...  

The contribution aims to evaluate fracture toughness of the P91 steel in the ductile regime. This steel is broadly used for applications for pressure vessels and piping systems. The J–R curves were obtained using 1T, 0.5T and 0.25T CT specimens at 23 °C and using 0.5T and 0.25T CT specimens up to 600 °C. The energy normalization method for the J–R curve determination according to the ASTM E1820 was used. The resistance to crack propagation shows temperature dependence and the dynamic strain ageing effect with minimum values at 400 °C. Both specimen sizes 0.5T and 0.25T give a similar trend of the temperature dependence of fracture toughness. However, the size effect is observed as fracture toughness decreases with the specimen size. The results obtained are compared with the results of other authors pointing the specimen size effect and the temperature dependence of the steel.


Author(s):  
Matthias Bruchhausen ◽  
Tim Austin ◽  
Stefan Holmström ◽  
Eberhard Altstadt ◽  
Petr Dymacek ◽  
...  

Life extension of aging nuclear power plant components requires knowledge of the properties of the service-exposed materials. For instance, in long term service the tensile and creep properties might decline and the ductile-to-brittle transition temperature (DBTT) might shift towards higher temperatures. Monitoring of structural components in nuclear power plants receives much attention — in particular in the context of lifetime extension of current plants, where the amount of material available for destructive testing is limited. Much effort has therefore been invested in the development of miniature testing techniques that allow characterizing structural materials with small amounts of material. The small punch (SP) test is one of the most widely used of these techniques. It has been developed for nuclear applications but its use is spreading to other industries. Although the SP technique has been used for more than 30 years, there is currently no standard covering its most widely used applications. Within the auspices of ECISS TC 101 “Test methods for steel (other than chemical analysis)” WG 1 is currently developing an EN standard on the “Small Punch Test Method for Metallic Materials”. The standard will address small punch testing for the determination of tensile/fracture properties as well as small punch creep testing. This paper gives an overview of the state-of-the art of the SP tests and describes the scope of the standard under development.


Author(s):  
Seokmin Hong ◽  
Ki-Deuk Min ◽  
Soon-Hyeok Jeon ◽  
Bong-Sang Lee

In this study, the fatigue crack growth behavior of Type 347 stainless steel (SS) used in pressurizer surge line in Korea Standard Nuclear Power Plant was analyzed. Environmental fatigue crack growth rates (FCGRs) were evaluated using pre-cracked compact tension (CT) specimens under the various simulated PWR water conditions; different levels of dissolved oxygen (DO) and loading frequencies. FCGRs of 347SSs were accelerated under PWR water conditions. When DO levels increased and frequency decreased, FCGR of 347SS increased. Under the more corrosive environment at crack tip, FCGRs were accelerated more. FCGRs of 347SSs under PWR water condition were compared with reference FCGR curves of stainless steel in ASME code section XI, ASME Code Case N-809, and JSME based on FCGR data of 304SS and 316SS. In this study, FCGRs of 347SS were slightly faster than reference curves in JSME under PWR environment but slower than that in JSME under BWR environment. Compared to reference FCGR curve in ASME Code Case N-809, FCGRs of 347 stainless steels are similar or slightly higher.


Author(s):  
Thomas Métais ◽  
Stéphan Courtin ◽  
Laurent De Baglion ◽  
Cédric Gourdin ◽  
Jean-Christophe Le Roux

Fatigue rules from ASME have undergone a significant change over the past decade, especially with the inclusion of the effects of BWR and PWR environments on the fatigue life of components. The incorporation of the environmental effects into the calculations is performed via an environmental factor, Fen, which is introduced in ASME BPV code-case N-792 [5], and depends on factors such as the temperature, dissolved oxygen and strain rate. Nevertheless, a wide range of factors, such as surface finish, have a deleterious impact on fatigue life, but their contribution to fatigue life is typically taken through the transition factors to build the fatigue design curve [2] and not in an explicit way, such as the Fen factor. The testing supporting the rules pertaining to Environmental Fatigue Correction Factor (Fen) Method in ASME BPV was performed on specimens with a polished surface finish and on the basis that the Fen factor was applicable without alteration of the historical practice of building the design curve through transition factors. The extensive amount of testing conducted and reported in References [2] and [7] (technical basis for ASME BPV current EAF rules) was used to propose a set of transition coefficients from the mean air curve to the design curve on one hand, and on the other hand to build a Fen factor expression, defined as the difference between the life in air and in PWR environments. The work initiated by AREVA in 2005 [9] [10] [11] demonstrated that there is a clear interaction between the two aggravating effects of surface finish and PWR environment for fatigue damage, which was not experimentally tested in the References [2] and [7]. These results have clearly been supported by testing carried out independently in the UK by Rolls-Royce and AMEC FW [12]. These results are all the more relevant as most NPP components do not have a polished surface finish. Most surfaces are either industrially polished or installed as-manufactured. It was concluded that this proposal could potentially be applicable to a wide range of components and could be of interest to a wider community. EDF/Areva/CEA have therefore authored a code-case introducing the Fen-threshold, a factor which explicitly quantifies the interaction between PWR environment and surface finish. This paper summarizes this proposal and provides the technical background and experimental work to justify this proposal.


Author(s):  
M. F. Uddin ◽  
G. M. Wilkowski ◽  
S. Pothana ◽  
F. W. Brust

Thermal embrittlement of cast austenitic stainless steels (CASS) can occur at reactor operating temperatures potentially leading to a reduction in their fracture toughness. Some aged CASS materials have the potential to have exceedingly low toughness and also show high toughness variability due to the nature of their microstructure. The experimentally measured JIc values for CASS materials showed a large scatter when plotted against ferrite number (FN) or chrome equivalent number (Creq). Because of their low aged toughness with such a large variability, flaw evaluations of CASS material needs to be done carefully, especially since most US PWR nuclear plants have been given plant-life extensions for 60-year operation, and consideration of further extension to 80 years is underway. However, the ASME Section XI Appendix C flaw acceptance criterion currently does not have a recommended procedure for flaw evaluation for CASS materials with FN ≥ 20, and the Working Group recognizes that the changes might also be needed for CASS with FN less than 20. In this paper, a flaw evaluation procedure for fully aged CASS materials is presented using JIc values at LWR operating temperatures predicted from several existing thermal-aging toughness degradation models. All available thermal aging models for CASS materials were evaluated which predict fully aged (lower saturated toughness condition) fracture toughness of CASS based on their chemical compositions. A set of 20 experimental test data was analyzed by using all models to find the most accurate thermal aging models. Using the most accurate models, correlations between predicted JIc values and French Creq-Fr and ASTM A800 FN were developed from a database of 274 pipe/elbows in US PWR plants whose chemical compositions were known. Finally, the correlation was used to determine the elastic-plastic fracture correction factor (Z factor) for CASS pipe and fittings as a function of pipe diameter and their chemical compositions from material certification sheet using the Dimensionless-Plastic-Zone-Parameter (DPZP) analysis. The DPZP analysis is a relatively simple curve-fitting procedure through full-scale circumferential surface-cracked pipe tests developed in pipe fracture projects funded by the USNRC, and was checked against a full-scale aged CF8m pipe fracture test. After determining the chemical composition specific Z factor for CASS materials, the flaw evaluation can be performed according to the ASME Section XI Appendix C procedures.


Author(s):  
Mark Kirk ◽  
Marjorie Erickson ◽  
Richard Link

In 2006, EricksonKirk and EricksonKirk proposed a model describing a temperature dependence for upper shelf fracture toughness (JIc), based on the Zerilli-Armstrong (ZA) temperature dependence of the flow stress, that was common to the large number of ferritic steel datasets studied. The equation describing the temperature dependence of JIc was found to be a simple scalar multiple of the temperature dependence predicted by ZA for flow stress. Since that time a large dataset has been developed containing many experimental measurements of JIc for the purpose assessing and refining the previously proposed model. The new data, reported herein, validates the previously proposed model of JIc temperature dependence but suggests that revisions of the previously proposed model of JIc uncertainty are needed to ensure the applicability of the model to both low and high fracture toughness steels.


Sign in / Sign up

Export Citation Format

Share Document