scholarly journals Live load model for highway bridges

1993 ◽  
Vol 13 (1-2) ◽  
pp. 53-66 ◽  
Author(s):  
Andrzej S. Nowak
Author(s):  
Anselmo Leal Carneiro ◽  
Enson de Lima Portela ◽  
Túlio Nogueira Bittencourt

Abstract This work studies the fatigue live load model used in Brazil for highway bridges. Using the unlimited fatigue life approach, the current live load model is evaluated in relation to the actual traffic and a new fatigue live load model is proposed. Weigh-in-motion (WIM) stations data on two important Brazilian highways are used. The main structural analysis performed in this paper consider the bridges as box girders or multiple girders. The ratio between real traffic and the live load model load effect (bias factor) are determined for single and continuous spans in terms of bending moment and shear force. It is found that the bias factor of the current live load can vary a lot and may not ensure unlimited fatigue life. The proposed model, on the other hand, presents more uniform bias factors and is in accordance with the unlimited fatigue life approach for the WIM data.


2015 ◽  
Vol 8 (2) ◽  
pp. 124-139 ◽  
Author(s):  
C. E. Rossigali ◽  
M. S. Pfeil ◽  
R. C. Battista ◽  
L. V. Sagrilo

New live load models for highway bridge design in Brazil are under development by assembling real traffic database, traffic simulations, analytical-numerical modeling of the dynamic interaction between vehicle and structure and statistical extrapolations. This paper presents and discusses the results obtained in the first stages of this work which includes the comparison between the static effects due to the actual traffic of heavy vehicles and those generated by the live load model given in the current national code NBR 7188. It is demonstrated that this live load model is not appropriate to represent the actual traffic effects and may be, in some cases, non-conservative. The present work deals with short span bridges for two lanes single carriageway under free flow traffic scenarios. The representative static effects in these bridges due to the actual traffic of heavy vehicles are obtained by extrapolating its probability density functions to a certain return period. To this purpose, a traffic database was constructed by gathering data from several weighing stations in Brazilian highways which was then applied to perform traffic simulations through a specially developed computational tool.


Author(s):  
Amanda Pushka ◽  
Jonathan D Regehr ◽  
Graziano Fiorillo ◽  
Aftab Mufti ◽  
Basheer Hasan Algohi

Several provinces in Canada have modified the live load model specified in national bridge design codes to account for locally permitted trucks. Manitoba similarly introduced a live load model for the design of provincial bridges in accordance with AASHTO LRFD, the Modified HSS-25. This article presents truck weight datasets and methods used to develop Manitoba-specific live load statistics to conduct a reliability analysis for three typical simply supported structure types: precast prestressed concrete box girder, precast prestressed concrete I-girder and steel girder. The average reliability indices ranged from 4.69 to 4.95 with respect to the AASHTO LRFD live load statistics used to calibrate the code and 4.65 to 5.04 with respect to the Manitoba statistics. The results demonstrate a level of safety that exceeds the code requirements, indicating that structures designed to the HSS-25 potentially possess the structural capacity to withstand increased vehicular load effects for the considered bridge types.


Sign in / Sign up

Export Citation Format

Share Document