Evaluation of stress intensity factors in circular arc-shaped interfacial crack using integral

1992 ◽  
Vol 14 (2) ◽  
pp. 141-153 ◽  
Author(s):  
N.Y. Choi ◽  
Y.Y. Earmme
Author(s):  
D. J. Shim ◽  
S. Tang ◽  
T. J. Kim ◽  
N. S. Huh

Stress intensity factor solutions are readily available for flaws found in pipe to pipe welds or shell to shell welds (i.e., circumferential/axial crack in cylinder). In some situations, flaws can be detected in locations where an appropriate crack model is not readily available. For instance, there are no practical stress intensity factor solutions for circular-arc cracks which can form in circular welds (e.g., nozzle to vessel shell welds and storage cask closure welds). In this paper, stress intensity factors for circular-arc cracks in finite plates were calculated using finite element analysis. As a first step, stress intensity factors for circular-arc through-wall crack under uniform tension and crack face pressure were calculated. These results were compared with the analytical solutions which showed reasonable agreement. Then, stress intensity factors were calculated for circular-arc semi-elliptical surface cracks under the lateral and crack face pressure loading conditions. Lastly, to investigate the applicability of straight crack solutions for circular-arc cracks, stress intensity factors for circular-arc and straight cracks (both through-wall and surface cracks) were compared.


For a non-pathological bimaterial in which an interface crack displays no oscillatory behaviour, it is observed that, apart possibly from the stress intensity factors, the structure of the near-tip field in each of the two blocks is independent of the elastic moduli of the other block. Collinear interface cracks are analysed under this non-oscillatory condition, and a simple rule is formulated that allows one to construct the complete solutions from mode III solutions in an isotropic, homogeneous medium. The general interfacial crack-tip field is found to consist of a two-dimensional oscillatory singularity and a one-dimensional square root singularity. A complex and a real stress intensity factors are proposed to scale the two singularities respectively. Owing to anisotropy, a peculiar fact is that the complex stress intensity factor scaling the oscillatory fields, however defined, does not recover the classical stress intensity factors as the bimaterial degenerates to be non-pathological. Collinear crack problems are also formulated in this context, and a strikingly simple mathematical structure is identified. Interactive solutions for singularity-interface and singularity interface-crack are obtained. The general results are specialized to decoupled antiplane and in-plane deformations. For this important case, it is found that if a material pair is non-pathological for one set of relative orientations of the interface and the two solids, it is non-pathological for any set of orientations. For bonded orthotropic materials, an intuitive choice of the principal measures of elastic anisotropy and dissimilarity is rationalized. A complex-variable representation is presented for a class of degenerate orthotropic materials. Throughout the paper, the equivalence of the Lekhnitskii and Stroh formalisms is emphasized. The article concludes with a formal statement of interfacial fracture mechanics for anisotropic solids.


1984 ◽  
Vol 51 (4) ◽  
pp. 780-786 ◽  
Author(s):  
A.-Y. Kuo

Dynamic stress intensity factors for an interfacial crack between two dissimilar elastic, fully anisotropic media are studied. The mathematical problem is reduced to three coupled singular integral equations. Using Jacobi polynomials, solutions to the singular integral equations are obtained numerically. The orders of stress singularity and stress intensity factors of an interfacial crack in a (θ(1)/θ(2)) composite solid agree well with the finite element solutions.


2002 ◽  
Vol 18 (3) ◽  
pp. 145-151
Author(s):  
Y. C. Shiah ◽  
Jiunn Fang ◽  
Chin-Yi Wei ◽  
Y.C. Liang

AbstractIn this paper, the crack problem of a large beam-like strip weakened by a circular arc crack with in-plane bending moments applied at both ends is approximately solved using the complex variable technique. Complex stress functions corresponding to the applied bending moments are superposed with those due to the disturbance of the crack to satisfy the governing boundary equation. The conformal mapping function devised to transform the contour surface of a circular arc crack to a unit circle is then substituted in the boundary equation to facilitate the evaluation of Cauchy integrals. In this way, the complex stress functions due to the crack disturbance are determined and the stress intensity factors are calculated through a limiting process to give their explicit forms. Eventually, the geometric functions for the variation of the stress intensity factors on account of the crack shape are plotted as a function of the curvature of a circular-arc crack.


Sign in / Sign up

Export Citation Format

Share Document