Total positivity properties of the bivariate diagonal natural exponential families

1996 ◽  
Vol 26 (2) ◽  
pp. 119-124 ◽  
Author(s):  
I-Li Lu ◽  
Donald Richards
Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1568
Author(s):  
Shaul K. Bar-Lev

Let F=Fθ:θ∈Θ⊂R be a family of probability distributions indexed by a parameter θ and let X1,⋯,Xn be i.i.d. r.v.’s with L(X1)=Fθ∈F. Then, F is said to be reproducible if for all θ∈Θ and n∈N, there exists a sequence (αn)n≥1 and a mapping gn:Θ→Θ,θ⟼gn(θ) such that L(αn∑i=1nXi)=Fgn(θ)∈F. In this paper, we prove that a natural exponential family F is reproducible iff it possesses a variance function which is a power function of its mean. Such a result generalizes that of Bar-Lev and Enis (1986, The Annals of Statistics) who proved a similar but partial statement under the assumption that F is steep as and under rather restricted constraints on the forms of αn and gn(θ). We show that such restrictions are not required. In addition, we examine various aspects of reproducibility, both theoretically and practically, and discuss the relationship between reproducibility, convolution and infinite divisibility. We suggest new avenues for characterizing other classes of families of distributions with respect to their reproducibility and convolution properties .


2021 ◽  
pp. 001316442199253
Author(s):  
Robert C. Foster

This article presents some equivalent forms of the common Kuder–Richardson Formula 21 and 20 estimators for nondichotomous data belonging to certain other exponential families, such as Poisson count data, exponential data, or geometric counts of trials until failure. Using the generalized framework of Foster (2020), an equation for the reliability for a subset of the natural exponential family have quadratic variance function is derived for known population parameters, and both formulas are shown to be different plug-in estimators of this quantity. The equivalent Kuder–Richardson Formulas 20 and 21 are given for six different natural exponential families, and these match earlier derivations in the case of binomial and Poisson data. Simulations show performance exceeding that of Cronbach’s alpha in terms of root mean square error when the formula matching the correct exponential family is used, and a discussion of Jensen’s inequality suggests explanations for peculiarities of the bias and standard error of the simulations across the different exponential families.


Sign in / Sign up

Export Citation Format

Share Document