In vitro culture of young floral buds of tomato (Lycopersicon esculentum mill.)

Plant Science ◽  
1986 ◽  
Vol 47 (3) ◽  
pp. 221-227 ◽  
Author(s):  
Rajeev Rastogi ◽  
Vipen K. Sawhney
1963 ◽  
Vol 50 (10) ◽  
pp. 1035-1045 ◽  
Author(s):  
Sanford S. Tepfer ◽  
Richard I. Greyson ◽  
William R. Craig ◽  
Joseph L. Hindman
Keyword(s):  

1970 ◽  
Vol 19 (1) ◽  
pp. 101-111 ◽  
Author(s):  
Rakha Hari Sarker ◽  
Khaleda Islam ◽  
M.I. Hoque

Agrobacterium-mediated genetic transformation system has been developed for two tomato (Lycopersicon esculentum Mill.) varieties, namely Pusa Ruby (PR) and BARI Tomato-3 (BT-3). Prior to the establishment of transformation protocol cotyledonary leaf explants from the two varieties were cultured to obtain genotype independent in vitro regeneration. Healthy multiple shoot regeneration was obtained from the cut ends of cotyledonary leaf segments for both the varieties on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. The maximum root induction from the regenerated shoots was achieved on half the strength of MS medium supplemented with 0.2 mg/l IAA. The in vitro grown plantlets were successfully transplanted into soil where they flowered and produced fruits identical to those developed by control plants. Transformation ability of cotyledonary leaf explants was tested with Agrobacterium tumefaciens strain LBA4404 harboring binary plasmid pBI121, containing GUS and npt II genes. Transformed cotyledonary leaf explants were found to produce multiple shoots on MS containing 1.0 mg/l BAP and 0.1 mg/l IAA. Selection of the transformed shoots was carried out by gradually increasing the concentration of kanamycin to 200 mg/l since kanamycin resistant gene was used for transformation experiments. Shoots that survived under selection pressure were subjected to rooting. Transformed rooted plantlets were transferred to soil. Stable expression of GUS gene was detected in the various tissues from putatively transformed plantlets using GUS histochemical assay.  Key words: In vitro regeneration, transformation, tomato D.O.I. 10.3329/ptcb.v19i1.5004 Plant Tissue Cult. & Biotech. 19(1): 101-111, 2009 (June)


2000 ◽  
Vol 35 (8) ◽  
pp. 1523-1529
Author(s):  
MIKLÓS FÁRI ◽  
GERALDO MILANEZ DE RESENDE ◽  
NATONIEL FRANKLIN DE MELO

Este trabalho teve por objetivo avaliar a capacidade de regeneração das cultivares de tomateiro industrial (Lycopersicon esculentum Mill) IPA-5 e IPA-6, utilizando quatro composições de meio de cultura descritos na literatura e cinco variações de inoculação. Foi testada uma nova variação de inoculação, denominada cotilédone fendido. A maior freqüência de formação de gemas vegetativas foi 100% no caso de IPA-5, e 65% no caso de IPA-6. Para induzir o alongamento de brotos, foram necessários três subcultivos dos explantes apresentando gemas. No caso de IPA-5, o número de brotos obtidos foi maior quando a indução de gemas foi realizada em meio contendo BAP (2,5 mg L-1) e AIA (0,2 mg L-1) seguido de três subcultivos, em meio como zeatina (0,5 mg L-1). Usando esse protocolo, a cultivar IPA-5 produziu uma média de 5,45 brotos alongados a partir do cotilédone fendido. Essa capacidade excedeu significativamente o cotilédone aparado, que produziu 4,4 brotos alongados por explante. No caso de IPA-6, a melhor combinação de meios e método de inoculação produziu 0,87 broto alongado por explante. Os brotos alongados foram enraizados e transferidos para casa de vegetação.


IUBMB Life ◽  
1997 ◽  
Vol 41 (4) ◽  
pp. 833-840
Author(s):  
Maria Piera Piacentini ◽  
Donata Ricci ◽  
Daniele Fraternale ◽  
Elena Piatti ◽  
Antonio Manunta ◽  
...  

Author(s):  
Talib Khashan Kareem ◽  
Abbas Tikki Karrar

This experiment was conducted in faculty of Science labs, Kufa University, carried out during 2015 to applied methods for extraction, purification and Quantitative of Lycopene red pigments, from callus tissue and tomato fruits mother plant (Lycopersicon esculentum Mill).This study include of three parts, Firstly; Tomato seeds(Supper queen) hybrid were germinated in free MS medium and callus induction from shoot tip (3cmpieces) by using MS medium supplemented with Dichlorophenoxiactic acid (2,4-D) at different concentration (0.5,1, 1.5mg/l)with benzyl adenine (BA) at concentration of (0.3 mg/l). Secondly; identically callus fresh weight re-cultured in the same MS medium supplemented with high molecular weight polyethylene glycol (PEG) was used as selective agent at level of (5,10,15 and 25%). Thirdly; comparisons study were made between in vitro and in vivo grown plant. Powder of control lycopene used as standard solution. The content of lycopene was done by using high performance liquid chromatography (HPLC), and compare of the quantitatively of lycopene with these content in fruits of mother plant, and callus tissue. Also, include alcohol extraction of Lycopene from tomato fruit by using acetone and hexane mixture. The result showed significant increased (P< 0.05) of lycopene production and the superiority of lycopene content in callus than the content in fruits of mother plant. Antioxidant enzymes activity like Catalase (CAT),Guaiacol peroxidise (POX) and Superoxide dismutase(SOD) were high in callus under drought stress than in fruit of mother plant. However, Proline and total sugar content were at higher levels in callus under drought stress than in fruit of mother plant.


Sign in / Sign up

Export Citation Format

Share Document