Salt Stress
Recently Published Documents





2021 ◽  
Jazba Anum ◽  
Charlotte O’Shea ◽  
M Zeeshan Hyder ◽  
Sumaira Farrukh ◽  
Karen Skriver ◽  

Abstract Germin-like proteins (GLPs) are ubiquitous plant proteins, which play significant role in plant responses against various abiotic stresses. However, the potential functions of GLPs in rice (Oryza Sativa) against salt and drought stress are still unclear. In this study, transcriptional variation of 8 OsGLP genes (OsGLP3-6, OsGLP4-1, OsGLP8-4, OsGLP8-7, OsGLP8-10, OsGLP8-11 and OsGLP8-12) was analyzed in leaves and roots of two economically important Indica rice cultivars, KS282 and Super Basmati under salt and drought stress at early seedling stage. The relative expression analysis from qRT-PCR indicated the highest increase in expression of OsGLP3-6 in leaves and roots of both rice varieties with a significantly higher expression in KS282. Moreover, relative change in expression of OsGLP8-7, OsGLP8-10 and OsGLP8-11 under salt stress and OsGLP8-7 under drought stress was also commonly higher in leaves and roots of KS282 as compared to Super Basmati. Whereas, OsGLP3-7 and OsGLP8-12 after salt stress and OsGLP8-4 and OsGLP8-12 after drought stress were observed with higher relative expression in roots of Super Basmati than KS282. Importantly, the OsGLP3-6 and OsGLP4-1 from chromosome 3 and 4 respectively showed higher expression in leaves whereas most of the OsGLP genes from chromosome 8 exhibited higher expression in roots. Overall, as a result of this comparative analysis, OsGLP genes showed both general and specific expression profiles depending upon a specific rice variety, stress condition as well as tissue type. These results will increase our understanding of role of OsGLP genes in rice crop and provide useful information for the further in-depth research on their regulatory mechanisms in response to these stress conditions.

2021 ◽  
Vol 11 (1) ◽  
Malik Fiaz Hussain Ferdosi ◽  
Amna Shoaib ◽  
Salma Habib ◽  
Kashif Ali Khan

AbstractSalinity is challenging threats to the agricultural system and leading cause of crop loss. Salicylic acid (SA) is an important endogenous signal molecule, which by regulating growth and physiological processes improves the plant ability to tolerate salt stress. Considering the prime importance of Gladiolus grandiflorus (L.) in the world’s cut-flower market, the research work was undertaken to elucidate salinity tolerance in G. grandiflorus by exogenous application of SA irrigated with saline water. Results revealed that increasing salinity (EC: 2, 4 and 6 dS m–1) considerably altered morpho-growth indices (corm morphology and plant biomass) in plants through increasing key antioxidants including proline content and enzymes activity (superoxide dismutase, catalase and peroxidase), while negatively affected the total phenolic along with activity of defense-related enzymes (phenylalanine ammonia lyase, and polyphenol oxidase activity). SA application (50–200 ppm) in non-saline control or saline conditions improved morpho-physiological traits in concentration-dependent manners. In saline conditions, SA minimized salt-stress by enhancing chlorophyll content, accumulating organic osmolytes (glycine betaine and proline content), total phenolic, and boosting activity of antioxidant and defense-related enzymes. Principle component analysis based on all 16 morphological and physiological variables generated useful information regarding the classification of salt tolerant treatment according to their response to SA. These results suggest SA (100 or 150 ppm) could be used as an effective, economic, easily available and safe phenolic agent against salinity stress in G. grandiflorus.

Satavisha Mullick ◽  
Ramesh Kumar Kushwaha

Background: Green gram (Vigna radiata) also known as moong bean is an annually cultivated in East Asia, Southeast Asia and Indian subcontinent. V. radiata is very important source for the protein as in our regular diet and it proved essential amino acid such as phenylalanine, leucine, isoleucine, valine, lysine, arginine, methionine, threonine and tryptophan. Methods: Here, we studied the influence of seed endophytes on germination and development under salinity stress condition. Seeds were treated with sodium hypochlorite for 30 min under shaking condition at 100 rpm for surface sterilization and treated with 70% ethanol for 2 min and followed five times rinse with autoclaved water. Surface sterilised seeds were homogenised in autoclaved water with the help of mortal-pestle. Homogenised seed solution made serial dilution and spreaded over nutrient agar for endophytic bacterial growth. Seeds were treated with bacteriocide and fungicide to make endophytes free, followed by sown for germination at 0mM, 50mM, 100mM and 150mM NaCl concentration. Result: Endophyte free seedlings were more susceptible against salt stress over normal seedlings. Therefore endophyte free seedling shoot and root biomass was 23.5% and 65.7% lower than control seedling biomass at 0mM salt respectively, while root length was 70% lower than control seedling root at 0mM salt concentration. Proline content in shoot and root observed an increase with increase of salt concentration. At 0mM salt, proline content was 0.00782±0.00043 and 0.00648±0.00017 (µmol/mg) in root of normal and endophyte free seedling respectively, while in shoot, it was non-significant difference. Glycine betaine content found to be increasing upto 100mM, followed by decreasing at 150mM in both root and shoot tissue. Glycine betaine content in endophyte free and control seedling shoot was 74.2±2.5 and 96.0±2.73 (µg/200mg) respectively at 100mM salt concentration. This result suggests, not only heritable genomic DNA but also endophytes associated with seed are very much important for the seedling growth and development which is also finally helps to combat abiotic stress situation.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1227
Ali Mahmoud El-Badri ◽  
Maria Batool ◽  
Ibrahim A. A. Mohamed ◽  
Zongkai Wang ◽  
Ahmed Khatab ◽  

Measuring metabolite patterns and antioxidant ability is vital to understanding the physiological and molecular responses of plants under salinity. A morphological analysis of five rapeseed cultivars showed that Yangyou 9 and Zhongshuang 11 were the most salt-tolerant and -sensitive, respectively. In Yangyou 9, the reactive oxygen species (ROS) level and malondialdehyde (MDA) content were minimized by the activation of antioxidant enzymes such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) for scavenging of over-accumulated ROS under salinity stress. Furthermore, Yangyou 9 showed a significantly higher positive correlation with photosynthetic pigments, osmolyte accumulation, and an adjusted Na+/K+ ratio to improve salt tolerance compared to Zhongshuang 11. Out of 332 compounds identified in the metabolic profile, 225 metabolites were filtrated according to p < 0.05, and 47 metabolites responded to salt stress within tolerant and sensitive cultivars during the studied time, whereas 16 and 9 metabolic compounds accumulated during 12 and 24 h, respectively, in Yangyou 9 after being sown in salt treatment, including fatty acids, amino acids, and flavonoids. These metabolites are relevant to metabolic pathways (amino acid, sucrose, flavonoid metabolism, and tricarboxylic acid cycle (TCA), which accumulated as a response to salinity stress. Thus, Yangyou 9, as a tolerant cultivar, showed improved antioxidant enzyme activity and higher metabolite accumulation, which enhances its tolerance against salinity. This work aids in elucidating the essential cellular metabolic changes in response to salt stress in rapeseed cultivars during seed germination. Meanwhile, the identified metabolites can act as biomarkers to characterize plant performance in breeding programs under salt stress. This comprehensive study of the metabolomics and antioxidant activities of Brassica napus L. during the early seedling stage is of great reference value for plant breeders to develop salt-tolerant rapeseed cultivars.

HortScience ◽  
2021 ◽  
pp. 1-8
Hong Jiang ◽  
Zhiyuan Li ◽  
Xiumei Jiang ◽  
Yong Qin

Coreopsis tinctoria Nutt. (C. tinctoria) is used in composite tea material and has important medicinal functions. Soil salinization affects the growth and development of C. tinctoria in Xinjiang (China). Here, we discussed the changes in photosynthesis and physiological characteristics of C. tinctoria seedlings treated with different concentrations of NaCl [0 (CK), 50, 100, 150, 200, and 250 mmol·L−1] for 12, 24, and 72 hours. The results showed that the net photosynthetic rate (Pn), stomatal conductance (gS), transpiration rate (Tr), and stomatal inhibition rate (Ls) decreased significantly with increasing concentrations of NaCl. Salt stress promoted the accumulation of peroxidase (POD), catalase (CAT), soluble sugar, soluble protein, and free proline (Pro). A highly significant positive correlation was found between Ls and Fv/Fm; Ls and Fv/Fo; soluble sugar and CAT; soluble sugar and soluble protein. C. tinctoria was most sensitive to the concentrations of 150 to 250 mmol·L−1 NaCl, and its salt stress tolerance was increased by reducing photosynthetic fluorescence parameters, improving the antioxidant enzyme system, and regulating osmotic substances.

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Delvian Delvian ◽  
Adrian Hartanto

Salt stress is one of the serious abiotic stressors which limit the growth and development of important crops in agricultural lands. Arbuscular mycorrhizal fungi (AMF) have been implemented as a strategy to mitigate the adverse effects due to an impact of salt stress through the structural and physiological adjustment. This study aimed to determine a relationship between salinity levels (0, 150, 300, and 450 mM NaCl) and AMF treatments (Glomus manihotis, Glomus etunicatum, and G. manihotis + G. etunicatum) to the salt tolerance of Leucaena leucocephala seedlings in a greenhouse. Salinity reduced the plant height, biomass, and root colonization by AMF. However, the inoculation of AMF, especially the consortium, ameliorated the negative effects by stabilizing the growth performance and supporting the photosynthetic outputs through optimum nutrient and mineral absorptions. These results were indicative through a significant interaction between salinity levels and the types of AMF treatment in all parameters except in the total leaf protein and proline contents from the two-way ANOVA results. Root colonization was highly correlated with the plant height, biomass, and total carbohydrate content with a maximum contribution conferred by the AMF consortium, based on Pearson’s correlation coefficient test and PCA analysis. Our study then showed the positive impact of AMF toward salt tolerance by L. leucocephala with potential application and cultivation in salt-stressed ecosystems.

Export Citation Format

Share Document