A mechanistic critical heat flux model for subcooled flow boiling based on local bulk flow conditions

1988 ◽  
Vol 14 (6) ◽  
pp. 711-728 ◽  
Author(s):  
C.H. Lee ◽  
I. Mudawwar
Volume 3 ◽  
2004 ◽  
Author(s):  
Jason S. Bower ◽  
James F. Klausner

Recent work has demonstrated that as the bulk convective velocity in subcooled nucleate flow boiling increases, the heat transfer tends to become independent of flow orientation with respect to gravity. There is significant interest in developing heat exchangers for next generation spacecraft that operate in the gravity-independent flow boiling regime. In order to develop such heat exchangers it is important to understand the effect of gravity on the critical heat flux and to determine whether a gravity on the critical heat flux and to determine whether a gravity-independent flow boiling critical heat flux regime exists. This work describes subcooled flow boiling experiments where the critical heat flux is measured over a range of flow orientations with respect to gravity: 0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. It has been found that at low bulk flow velocities there is a large variation of critical heat flux with different flow orientations. At large convective velocities, the variation of critical heat flux with different flow orientations is significantly diminished. It appears that with further increases in bulk flow velocity, a gravity-independent critical heat flux regime exists, although the current experimental facility was not capable of operating at those flow conditions.


Author(s):  
Bao Truong ◽  
Lin-wen Hu ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.


2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Saeid Vafaei ◽  
Dongsheng Wen

This work investigates subcooled flow boiling of aqueous based alumina nanofluids in 510 μm single microchannels with a focus on the effect of nanoparticles on the critical heat flux. The surface temperature distribution along the pipe, the inlet and outlet pressures and temperatures are measured simultaneously for different concentrations of alumina nanofluids and de-ionized water. To minimize the effect of nanoparticle depositions, all nanofluid experiments are performed on fresh microchannels. The experiment shows an increase of ∼51% in the critical heat flux under very low nanoparticle concentrations (0.1 vol %). Different burnout characteristics are observed between water and nanofluids, as well as different pressure and temperature fluctuations and flow pattern development during the stable boiling period. Detailed observations of the boiling surface show that nanoparticle deposition and a subsequent modification of the boiling surface are common features associated with nanofluids, which should be responsible for the different boiling behaviors of nanofluids.


Sign in / Sign up

Export Citation Format

Share Document