A critical heat flux model for saturated flow boiling on the downward curved heated surface

2018 ◽  
Vol 114 ◽  
pp. 458-463 ◽  
Author(s):  
Qiang Hu ◽  
Xiao Yan ◽  
Shanfang Huang ◽  
Junchong Yu
Author(s):  
Emilio Baglietto ◽  
Etienne Demarly ◽  
Ravikishore Kommajosyula

Advancement in the experimental techniques have brought new insights into the microscale boiling phenomena, and provide the base for a new physical interpretation of flow boiling heat transfer. A new modeling framework in Computational Fluid Dynamics has been assembled at MIT, and aims at introducing all necessary mechanisms, and explicitly tracks: (1) the size and dynamics of the bubbles on the surface; (2) the amount of microlayer and dry area under each bubble; (3) the amount of surface area influenced by sliding bubbles; (4) the quenching of the boiling surface following a bubble departure and (5) the statistical bubble interaction on the surface. The preliminary assessment of the new framework is used to further extend the portability of the model through an improved formulation of the force balance models for bubble departure and lift-off. Starting from this improved representation at the wall, the work concentrates on the bubble dynamics and dry spot quantification on the heated surface, which governs the Critical Heat Flux (CHF) limit. A new proposition is brought forward, where Critical Heat Flux is a natural limiting condition for the heat flux partitioning on the boiling surface. The first principle based CHF is qualitatively demonstrated, and has the potential to deliver a radically new simulation technique to support the design of advanced heat transfer systems.


Author(s):  
Wai Keat Kuan ◽  
Satish G. Kandlikar

An experimental facility is developed to investigate critical heat flux (CHF) of saturated flow boiling of Refrigerant-123 (R-123) in microchannels. Six parallel Microchannels with cross sectional area of 0.2 mm × 0.2 mm are fabricated on a copper block, and a Polyvinyl Chloride (PVC) cover is then placed on top of the copper block to serve as a transparent cover through which flow patterns and boiling phenomena could be observed. A resistive cartridge heater is used to provide a uniform heat flux to the microchannels. The experimental test facility is designed to accommodate test sections with different microchannel geometries. The mass flow rate, inlet pressure, inlet temperature of Refrigerant-123, and the electric current supplied to the resistive cartridge heater are controlled to provide quantitative information near the CHF condition in microchannels. A high-speed camera is used to observe and interpret flow characteristics of CHF condition in microchannels.


Sign in / Sign up

Export Citation Format

Share Document