scholarly journals Alumina Nanoparticle Pre-Coated Tubing Enhancing Subcooled Flow Boiling Critical Heat Flux

Author(s):  
Bao Truong ◽  
Lin-wen Hu ◽  
Jacopo Buongiorno ◽  
Thomas McKrell

Nanofluids are engineered colloidal dispersions of nano-sized particle in common base fluids. Previous pool boiling studies have shown that nanofluids can improve critical heat flux (CHF) up to 200% for pool boiling and up to 50% for subcooled flow boiling due to the boiling induced nanoparticle deposition on the heated surface. Motivated by the significant CHF enhancement of nanoparticle deposited surface, this study investigated experimentally the subcooled flow boiling heat transfer of pre-coated test sections in water. Using a separate coating loop, stainless steel test sections were treated via flow boiling of alumina nanofluids at constant heat flux and mass flow rate. The pre-coated test sections were then used in another loop to measure subcooled flow boiling heat transfer coefficient and CHF with water. The CHF values for the pre-coated tubing were found on average to be 28% higher than bare tubing at high mass flux G = 2500 kg/m2 s. However, no enhancement was found at lower mass flux G = 1500 kg/m2 s. The heat transfer coefficients did not differ much between experiments when the bare or coated tubes were used. SEM images of the test sections confirm the presence of a nanoparticle coating layer. The nanoparticle deposition is sporadic and no relationship between the coating pattern and the amount of CHF enhancement is observed.

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
YanFeng Fan ◽  
Ibrahim Hassan

Flow boiling heat transfer in a horizontal microtube with inlet restriction (orifice) under uniform heating condition is experimentally investigated using FC-72 as working fluid. A stainless steel microtube with an inner diameter of 889 μm is selected as main microtube. Two microtubes with smaller diameters are assembled at the inlet of main microtube to achieve the restriction ratios of 50% and 20%. The experimental measurement is carried out at mass fluxes ranging from 160 to 870 kg/m2·s, heat fluxes varying from 6 to 170 kW/m2, inlet temperatures of 23 and 35 °C, and saturation pressures of 10 and 45 kPa. The effects of the orifices on two-phase pressure drop, critical heat flux (CHF), and flow boiling heat transfer coefficient are studied. The results show that the pressure drop caused by the orifice takes a considerable portion in the total pressure drop at low mass fluxes. This ratio decreases as the vapor quality or mass flux increases. The difference of normal critical heat flux in the microtubes with different orifice sizes is negligible. In the aspect of flow boiling heat transfer, the orifice is able to enhance the heat transfer at low mass flux and high saturation pressure, which indicates the contribution of orifice in the nucleate boiling dominated regime. However, the effect of orifice on flow boiling heat transfer is negligible in the forced convective boiling dominated regime.


Author(s):  
Saeid Vafaei ◽  
Dongsheng Wen

This work investigates the subcooled flow boiling of aqueous based nanofluids in a 510 μm single microchannel with a focus on the effect of nanoparticles on the critical heat flux (CHF). The surface temperature distribution along the pipe, the inlet and outlet pressures and temperatures are measured simultaneously for different concentrations of alumina nanofluids and dionized water. The experiment shows a remarkable increase ∼ 31% in the CHF under very low nanoparticle concentrations (∼0.1v%) and a nonlinear influence of nanoparticles on the subcooled boiling heat transfer.


2020 ◽  
Vol 3 (2) ◽  
pp. 33
Author(s):  
M. M. Sarafraz ◽  
H. Arya

The subcooled flow boiling heat transfer characteristics of n-heptane and water is conducted for an upward flow inside the vertical annulus with an inner gap of 30 mm, in different heat fluxes up to 132kW.m-2, subcooling max.:30C, flow rate: 1.5 to 3.5lit.min-1 under the atmospheric pressure. The measured data indicate that the subcooled flow boiling heat transfer coefficient significantly increases with increasing liquid flow rate and heat flux and slightly decreases with decreasing the subcooling level. Although results demonstrate that subcooling is the most effective operation parameter on onset of nucleate boiling such that with decreasing the subcooling level, the inception heat flux significantly decreases. Besides, recorded results from the visualization of flow show that the mean diameter of the bubbles departing from the heating surface decreases slightly with increasing the flow rate and slightly decreases with decreasing the subcooling level. Meanwhile, comparisons of the present heat transfer data for n-heptane and water in the same annulus and with some existing correlations are investigated. Results of comparisons reveal an excellent agreement between experimental data and those of calculated by Chen Type model and Gungor–Winterton predicting correlation.


Sign in / Sign up

Export Citation Format

Share Document