An approach to the heat flow problems and transient temperature rise in nonlinear semiconductor media

1976 ◽  
Vol 3 (2) ◽  
pp. 147-151
Author(s):  
A Silard
Author(s):  
Yanzhong Wang ◽  
Peng Liu

Conical friction surface is a novel configuration for friction plate in transmission. Numerical FEA models for transient heat transfer and distribution of conically grooved friction plate have been established to investigate the thermal behavior of the conical surface with different configurations. The finite element method is used to obtain the numerical solution, the temperature test data of conical surface are obtained by the friction test rig. In order to study and compare the temperature behavior of conically grooved friction plate, several three-dimensional transient temperature models are established. The heat generated on the friction interface during the continuous sliding process is calculated. Two different pressure conditions were defined to evaluate the influence of different load conditions on temperature rise and the effects of conical configuration parameters on surface temperature distribution are investigated. The results show that the radial temperature gradient on conical friction surface is obvious. The uniform pressure condition could be used when evaluating the temperature rise of conically grooved friction plate. The increase of the cone height could improve the radial temperature gradient of the conically grooved friction plate.


Sign in / Sign up

Export Citation Format

Share Document