NUMERICAL SOLUTION OF HIGH DEGREE ALGEBRAIC EQUATIONS AND TRANSCENDENTAL EQUATIONS

1965 ◽  
pp. 71-182
Author(s):  
I.S. BEREZIN ◽  
N.P. ZHIDKOV
2014 ◽  
Vol 11 (04) ◽  
pp. 1350060 ◽  
Author(s):  
ZHIJIANG YUAN ◽  
LIANGAN JIN ◽  
WEI CHI ◽  
HENGDOU TIAN

A wide body of work exists that describes numerical solution for the nonlinear system of underwater towed system. Many researchers usually divide the tow cable with less number elements for the consideration of computational time. However, this type of installation affects the accuracy of the numerical solution. In this paper, a newly finite difference method for solving the nonlinear dynamic equations of the towed system is developed. The mathematical model of tow cable and towed body are both discretized to nonlinear algebraic equations by center finite difference method. A newly discipline for formulating the nonlinear equations and Jacobian matrix of towed system are proposed. We can solve the nonlinear dynamic equation of underwater towed system quickly by using this discipline, when the size of number elements is large.


2003 ◽  
Vol 25 (3) ◽  
pp. 170-185
Author(s):  
Dinh Van Phong

The article deals with the problem of consistent initial values of the system of equations of motion which has the form of the system of differential-algebraic equations. Direct treating the equations of mechanical systems with particular properties enables to study the system of DAE in a more flexible approach. Algorithms and examples are shown in order to illustrate the considered technique.


Sign in / Sign up

Export Citation Format

Share Document