FINITE DIFFERENCE METHOD FOR SOLVING THE NONLINEAR DYNAMIC EQUATION OF UNDERWATER TOWED SYSTEM

2014 ◽  
Vol 11 (04) ◽  
pp. 1350060 ◽  
Author(s):  
ZHIJIANG YUAN ◽  
LIANGAN JIN ◽  
WEI CHI ◽  
HENGDOU TIAN

A wide body of work exists that describes numerical solution for the nonlinear system of underwater towed system. Many researchers usually divide the tow cable with less number elements for the consideration of computational time. However, this type of installation affects the accuracy of the numerical solution. In this paper, a newly finite difference method for solving the nonlinear dynamic equations of the towed system is developed. The mathematical model of tow cable and towed body are both discretized to nonlinear algebraic equations by center finite difference method. A newly discipline for formulating the nonlinear equations and Jacobian matrix of towed system are proposed. We can solve the nonlinear dynamic equation of underwater towed system quickly by using this discipline, when the size of number elements is large.

1991 ◽  
Vol 23 (1-3) ◽  
pp. 517-524
Author(s):  
M. Kanoh ◽  
T. Kuroki ◽  
K. Fujino ◽  
T. Ueda

The purpose of the paper is to apply two methods to groundwater pollution in porous media. The methods are the weighted finite difference method and the boundary element method, which were proposed or developed by Kanoh et al. (1986,1988) for advective diffusion problems. Numerical modeling of groundwater pollution is also investigated in this paper. By subdividing the domain into subdomains, the nonlinearity is localized to a small region. Computational time for groundwater pollution problems can be saved by the boundary element method; accurate numerical results can be obtained by the weighted finite difference method. The computational solutions to the problem of seawater intrusion into coastal aquifers are compared with experimental results.


2021 ◽  
Vol 1 (1) ◽  
pp. 18-23
Author(s):  
Pramod Pandey

In this article, we have presented a variable step finite difference method for solving second order boundary value problems in ordinary differential equations. We have discussed the convergence and established that proposed has at least cubic order of accuracy. The proposed method tested on several model problems for the numerical solution. The numerical results obtained for these model problems with known / constructed exact solution confirm the theoretical conclusions of the proposed method. The computational results obtained for these model problems suggest that method is efficient and accurate.


2013 ◽  
Vol 2013 ◽  
pp. 1-15 ◽  
Author(s):  
A. Kazemi Nasab ◽  
A. Kılıçman ◽  
Z. Pashazadeh Atabakan ◽  
S. Abbasbandy

A new method based on a hybrid of Chebyshev wavelets and finite difference methods is introduced for solving linear and nonlinear fractional differential equations. The useful properties of the Chebyshev wavelets and finite difference method are utilized to reduce the computation of the problem to a set of linear or nonlinear algebraic equations. This method can be considered as a nonuniform finite difference method. Some examples are given to verify and illustrate the efficiency and simplicity of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-18 ◽  
Author(s):  
M. Tamer Şenel

The oscillation of solutions of the second-order nonlinear dynamic equation(r(t)(xΔ(t))γ)Δ+p(t)(xΔ(t))γ+f(t,x(g(t)))=0, with damping on an arbitrary time scaleT, is investigated. The generalized Riccati transformation is applied for the study of the Kamenev-type oscillation criteria for this nonlinear dynamic equation. Several new sufficient conditions for oscillatory solutions of this equation are obtained.


Author(s):  
Anup Singh ◽  
S. Das ◽  
S. H. Ong ◽  
H. Jafari

In the present article, the advection–diffusion equation (ADE) having a nonlinear type source/sink term with initial and boundary conditions is solved using finite difference method (FDM). The solution of solute concentration is calculated numerically and also presented graphically for conservative and nonconservative cases. The emphasis is given for the stability analysis, which is an important aspect of the proposed mathematical model. The accuracy and efficiency of the proposed method are validated by comparing the results obtained with existing analytical solutions for a conservative system. The novelty of the article is to show the damping nature of the solution profile due to the presence of the nonlinear reaction term for different particular cases in less computational time by using the reliable and efficient finite difference method.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yuangong Sun ◽  
Taher S. Hassan

We present new oscillation criteria for the second order nonlinear dynamic equation[r(t)ϕγ(xΔ(t))]Δ+q0(t)ϕγ(x(g0(t)))+∫ab‍q(t,s)ϕα(s)(x(g(t,s)))Δζ(s)=0under mild assumptions. Our results generalize and improve some known results for oscillation of second order nonlinear dynamic equations. Several examples are worked out to illustrate the main results.


Author(s):  
Imam Basuki ◽  
C Cari ◽  
A Suparmi

<p class="Normal1"><strong><em>Abstract: </em></strong><em>Partial Differential Equations (PDP) Laplace equation can be applied to the heat conduction. Heat conduction is a process that if two materials or two-part temperature material is contacted with another it will pass heat transfer. Conduction of heat in a triangle shaped object has a mathematical model in Cartesian coordinates. However, to facilitate the calculation, the mathematical model of heat conduction is transformed into the coordinates of the triangle. PDP numerical solution of Laplace solved using the finite difference method. Simulations performed on a triangle with some angle values α and β</em></p><p class="Normal1"><strong><em> </em></strong></p><p class="Normal1"><strong><em>Keywords:</em></strong><em>  heat transfer, triangle coordinates system.</em></p><p class="Normal1"><em> </em></p><p class="Normal1"><strong>Abstrak</strong> Persamaan Diferensial Parsial (PDP) Laplace  dapat diaplikasikan pada persamaan konduksi panas. Konduksi panas adalah suatu proses yang jika dua materi atau dua bagian materi temperaturnya disentuhkan dengan yang lainnya maka akan terjadilah perpindahan panas. Konduksi panas pada benda berbentuk segitiga mempunyai model matematika dalam koordinat cartesius. Namun untuk memudahkan perhitungan, model matematika konduksi panas tersebut ditransformasikan ke dalam koordinat segitiga. Penyelesaian numerik dari PDP Laplace diselesaikan menggunakan metode beda hingga. Simulasi dilakukan pada segitiga dengan beberapa nilai sudut  dan  </p><p class="Normal1"><strong> </strong></p><p class="Normal1"><strong>Kata kunci :</strong> perpindahan panas, sistem koordinat segitiga.</p>


Sign in / Sign up

Export Citation Format

Share Document