TRAVELLING WAVES FOR FORCED FISHER'S EQUATION

Author(s):  
Lawrence Turyn
1974 ◽  
Vol 11 (03) ◽  
pp. 445-457 ◽  
Author(s):  
Jenö Gazdag ◽  
José Canosa

The accurate space derivative (ASD) method for the numerical treatment of nonlinear partial differential equations has been applied to the solution of Fisher's equation, a nonlinear diffusion equation describing the rate of advance of a new advantageous gene, and which is also related to certain water waves and plasma shock waves described by the Korteweg-de-Vries-Burgers equation. The numerical experiments performed indicate how from a variety of initial conditions, (including a step function, and a wave with local perturbation) the concentration of advantageous gene evolves into the travelling wave of minimal speed. For an initial superspeed wave this evolution depends on the cutting off of the right-hand tail of the wave, which is physically plausible; this condition is necessary for the convergence of the ASD method. Detailed comparisons with an analytic solution for the travelling waves illustrate the striking accuracy of the ASD method for other than very small values of the concentration.


1974 ◽  
Vol 11 (3) ◽  
pp. 445-457 ◽  
Author(s):  
Jenö Gazdag ◽  
José Canosa

The accurate space derivative (ASD) method for the numerical treatment of nonlinear partial differential equations has been applied to the solution of Fisher's equation, a nonlinear diffusion equation describing the rate of advance of a new advantageous gene, and which is also related to certain water waves and plasma shock waves described by the Korteweg-de-Vries-Burgers equation. The numerical experiments performed indicate how from a variety of initial conditions, (including a step function, and a wave with local perturbation) the concentration of advantageous gene evolves into the travelling wave of minimal speed. For an initial superspeed wave this evolution depends on the cutting off of the right-hand tail of the wave, which is physically plausible; this condition is necessary for the convergence of the ASD method. Detailed comparisons with an analytic solution for the travelling waves illustrate the striking accuracy of the ASD method for other than very small values of the concentration.


Author(s):  
S. Tang ◽  
R. O. Weber

AbstractFisher's equation, which describes a balance between linear diffusion and nonlinear reaction or multiplication, is studied numerically by a Petrov-Galerkin finite element method. The results show that any local initial disturbance can propagate with a constant limiting speed when time becomes sufficiently large. Both the limiting wave fronts and the limiting speed are determined by the system itself and are independent of the initial values. Comparing with other studies, the numerical scheme used in this paper is satisfactory with regard to its accuracy and stability. It has the advantage of being much more concise.


2021 ◽  
Vol 22 (1) ◽  
pp. 138-166
Author(s):  
Othman Mahdi Salih ◽  
Majeed AL-Jawary

In the present paper, three reliable iterative methods are given and implemented to solve the 1D, 2D and 3D Fisher’s equation. Daftardar-Jafari method (DJM), Temimi-Ansari method (TAM) and Banach contraction method (BCM) are applied to get the exact and numerical solutions for Fisher's equations. The reliable iterative methods are characterized by many advantages, such as being free of derivatives, overcoming the difficulty arising when calculating the Adomian polynomial boundaries to deal with nonlinear terms in the Adomian decomposition method (ADM), does not request to calculate Lagrange multiplier as in the Variational iteration method (VIM) and there is no need to create a homotopy like in the Homotopy perturbation method (HPM), or any assumptions to deal with the nonlinear term. The obtained solutions are in recursive sequence forms which can be used to achieve the closed or approximate form of the solutions. Also, the fixed point theorem was presented to assess the convergence of the proposed methods. Several examples of 1D, 2D and 3D problems are solved either analytically or numerically, where the efficiency of the numerical solution has been verified by evaluating the absolute error and the maximum error remainder to show the accuracy and efficiency of the proposed methods. The results reveal that the proposed iterative methods are effective, reliable, time saver and applicable for solving the problems and can be proposed to solve other nonlinear problems. All the iterative process in this work implemented in MATHEMATICA®12. ABSTRAK: Kajian ini berkenaan tiga kaedah berulang boleh percaya diberikan dan dilaksanakan bagi menyelesaikan 1D, 2D dan 3D persamaan Fisher. Kaedah Daftardar-Jafari (DJM), kaedah Temimi-Ansari (TAM) dan kaedah pengecutan Banach (BCM) digunakan bagi mendapatkan penyelesaian numerik dan tepat bagi persamaan Fisher. Kaedah berulang boleh percaya di kategorikan dengan pelbagai faedah, seperti bebas daripada terbitan, mengatasi masalah-masalah yang timbul apabila sempadan polinomial bagi mengurus kata tak linear dalam kaedah penguraian Adomian (ADM), tidak memerlukan kiraan pekali Lagrange sebagai kaedah berulang Variasi (VIM) dan tidak perlu bagi membuat homotopi sebagaimana dalam kaedah gangguan Homotopi (HPM), atau mana-mana anggapan bagi mengurus kata tak linear. Penyelesaian yang didapati dalam bentuk urutan berulang di mana ianya boleh digunakan bagi mencapai penyelesaian tepat atau hampiran. Juga, teorem titik tetap dibentangkan bagi menaksir kaedah bentuk hampiran. Pelbagai contoh seperti masalah 1D, 2D dan 3D diselesaikan samada secara analitik atau numerik, di mana kecekapan penyelesaian numerik telah ditentu sahkan dengan menilai ralat mutlak dan baki ralat maksimum (MER) bagi menentukan ketepatan dan kecekapan kaedah yang dicadangkan. Dapatan kajian menunjukkan kaedah berulang yang dicadangkan adalah berkesan, boleh percaya, jimat masa dan boleh guna bagi menyelesaikan masalah dan boleh dicadangkan menyelesaikan masalah tak linear lain. Semua proses berulang dalam kerja ini menggunakan MATHEMATICA®12.


Sign in / Sign up

Export Citation Format

Share Document