absolute error
Recently Published Documents


TOTAL DOCUMENTS

3142
(FIVE YEARS 2407)

H-INDEX

46
(FIVE YEARS 21)

2022 ◽  
Vol 30 (8) ◽  
pp. 0-0

Artificial Intelligence (AI) significantly revolutionizes and transforms the global healthcare industry by improving outcomes, increasing efficiency, and enhancing resource utilization. The applications of AI impact every aspect of healthcare operation, particularly resource allocation and capacity planning. This study proposes a multi-step AI-based framework and applies it to a real dataset to predict the length of stay (LOS) for hospitalized patients. The results show that the proposed framework can predict the LOS categories with an AUC of 0.85 and their actual LOS with a mean absolute error of 0.85 days. This framework can support decision-makers in healthcare facilities providing inpatient care to make better front-end operational decisions, such as resource capacity planning and scheduling decisions. Predicting LOS is pivotal in today’s healthcare supply chain (HSC) systems where resources are scarce, and demand is abundant due to various global crises and pandemics. Thus, this research’s findings have practical and theoretical implications in AI and HSC management.


2022 ◽  
Vol 18 (2) ◽  
pp. 1-39
Author(s):  
Yannic Schröder ◽  
Lars Wolf

Ranging and subsequent localization have become more and more critical in today’s factories and logistics. Tracking goods precisely enables just-in-time manufacturing processes. We present the InPhase system for ranging and localization applications. It employs narrowband 2.4 GHz IEEE 802.15.4 radio transceivers to acquire the radio channel’s phase response. In comparison, most other systems employ time-of-flight schemes with Ultra Wideband transceivers. Our software can be used with existing wireless sensor network hardware, providing ranging and localization for existing devices at no extra cost. The introduced Complex-valued Distance Estimation algorithm evaluates the phase response to compute the distance between two radio devices. We achieve high ranging accuracy and precision with a mean absolute error of 0.149 m and a standard deviation of 0.104 m. We show that our algorithm is resilient against noise and burst errors from the phase-data acquisition. Further, we present a localization algorithm based on a particle filter implementation. It achieves a mean absolute error of 0.95 m in a realistic 3D live tracking scenario.


Author(s):  
Elizalde L. Piol ◽  
◽  
Luisito Lolong Lacatan ◽  
Jaime P. Pulumbarit

The use of Linear Regression in predicting enrolment has been shown to be beneficial, although it varies with various datasets and attributes; varying weights of the correlation of the attributes can be discarded if they do not impact the prediction. Data collecting had grown since prior investigations, resulting in a more complicated dataset with many varieties. As a result of the data being created by multiple clerks, cleaning and combining proved tough; nonetheless, the fundamental parameters remain intact. Different algorithms were examined but Linear Regression obtained the highest accuracy with a 12.398 percentage for the absolute error and a root mean squared of 26.936 to create a tangible model to anticipate the enrolment of Region IVA CALABARZON in the Philippines. This demonstrates that it was 2.067 percentage points more than the prior research.


2022 ◽  
Author(s):  
Xianqi Zhang ◽  
Kai Wang ◽  
Tao Wang

Abstract Scientific prediction of precipitation changes has important guiding value and significance for revealing regional spatial and temporal patterns of precipitation changes, flood climate prediction, etc. Based on the fact that CEEMD can effectively overcome the interference of modal aliasing and white noise, fine composite multi-scale entropy can reorganize the same FCMSE value to reduce the modal component and improve the computational efficiency, and Stacking ensemble learning can effectively and conveniently improve the fitting effect of machine learning, a rainfall prediction method based on CEEMD-fine composite multi-scale entropy and Stacking ensemble learning is constructed, and it is applied to the prediction of monthly precipitation in the Xixia. The results show that, under the same conditions, the CEEMD-RCMSE-Stacking model reduces the root mean square error by 83.48% and 62.08%, and the mean absolute error by 83.25% and 61.84%, respectively, compared with the single Stacking model and CEEMD-LSTM, while the goodness-of-fit coefficients improve by 15.94% and 2.34%, respectively, which means that the CEEMD-RCMSE-Stacking model has higher prediction performance. The CEEMD-RCMSE-Stacking model has higher prediction performance.


2022 ◽  
Vol 12 ◽  
Author(s):  
Shahzad Ahmad Qureshi ◽  
Aziz Ul Rehman ◽  
Adil Aslam Mir ◽  
Muhammad Rafique ◽  
Wazir Muhammad

The proposed algorithm of inverse problem of computed tomography (CT), using limited views, is based on stochastic techniques, namely simulated annealing (SA). The selection of an optimal cost function for SA-based image reconstruction is of prime importance. It can reduce annealing time, and also X-ray dose rate accompanying better image quality. In this paper, effectiveness of various cost functions, namely universal image quality index (UIQI), root-mean-squared error (RMSE), structural similarity index measure (SSIM), mean absolute error (MAE), relative squared error (RSE), relative absolute error (RAE), and root-mean-squared logarithmic error (RMSLE), has been critically analyzed and evaluated for ultralow-dose X-ray CT of patients with COVID-19. For sensitivity analysis of this ill-posed problem, the stochastically estimated images of lung phantom have been reconstructed. The cost function analysis in terms of computational and spatial complexity has been performed using image quality measures, namely peak signal-to-noise ratio (PSNR), Euclidean error (EuE), and weighted peak signal-to-noise ratio (WPSNR). It has been generalized for cost functions that RMSLE exhibits WPSNR of 64.33 ± 3.98 dB and 63.41 ± 2.88 dB for 8 × 8 and 16 × 16 lung phantoms, respectively, and it has been applied for actual CT-based image reconstruction of patients with COVID-19. We successfully reconstructed chest CT images of patients with COVID-19 using RMSLE with eighteen projections, a 10-fold reduction in radiation dose exposure. This approach will be suitable for accurate diagnosis of patients with COVID-19 having less immunity and sensitive to radiation dose.


F1000Research ◽  
2022 ◽  
Vol 10 ◽  
pp. 1190
Author(s):  
MD ROMAN BHUIYAN ◽  
Dr Junaidi Abdullah ◽  
Dr Noramiza Hashim ◽  
Fahmid Al Farid ◽  
Dr Jia Uddin ◽  
...  

Background: This paper focuses on advances in crowd control study with an emphasis on high-density crowds, particularly Hajj crowds. Video analysis and visual surveillance have been of increasing importance in order to enhance the safety and security of pilgrimages in Makkah, Saudi Arabia. Hajj is considered to be a particularly distinctive event, with hundreds of thousands of people gathering in a small space, which does not allow a precise analysis of video footage using advanced video and computer vision algorithms. This research proposes an algorithm based on a Convolutional Neural Networks model specifically for Hajj applications. Additionally, the work introduces a system for counting and then estimating the crowd density. Methods: The model adopts an architecture which detects each person in the crowd, spots head location with a bounding box and does the counting in our own novel dataset (HAJJ-Crowd). Results: Our algorithm outperforms the state-of-the-art method, and attains a remarkable Mean Absolute Error result of 200 (average of 82.0 improvement) and Mean Square Error of 240 (average of 135.54 improvement). Conclusions: In our new HAJJ-Crowd dataset for evaluation and testing, we have a density map and prediction results of some standard methods.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 627
Author(s):  
Fan Yang ◽  
Shan He ◽  
Siddharth Sadanand ◽  
Aroon Yusuf ◽  
Miodrag Bolic

In this study, a contactless vital signs monitoring system was proposed, which can measure body temperature (BT), heart rate (HR) and respiration rate (RR) for people with and without face masks using a thermal and an RGB camera. The convolution neural network (CNN) based face detector was applied and three regions of interest (ROIs) were located based on facial landmarks for vital sign estimation. Ten healthy subjects from a variety of ethnic backgrounds with skin colors from pale white to darker brown participated in several different experiments. The absolute error (AE) between the estimated HR using the proposed method and the reference HR from all experiments is 2.70±2.28 beats/min (mean ± std), and the AE between the estimated RR and the reference RR from all experiments is 1.47±1.33 breaths/min (mean ± std) at a distance of 0.6–1.2 m.


2022 ◽  
Vol 3 ◽  
Author(s):  
Quentin Meteier ◽  
Emmanuel De Salis ◽  
Marine Capallera ◽  
Marino Widmer ◽  
Leonardo Angelini ◽  
...  

In future conditionally automated driving, drivers may be asked to take over control of the car while it is driving autonomously. Performing a non-driving-related task could degrade their takeover performance, which could be detected by continuous assessment of drivers' mental load. In this regard, three physiological signals from 80 subjects were collected during 1 h of conditionally automated driving in a simulator. Participants were asked to perform a non-driving cognitive task (N-back) for 90 s, 15 times during driving. The modality and difficulty of the task were experimentally manipulated. The experiment yielded a dataset of drivers' physiological indicators during the task sequences, which was used to predict drivers' workload. This was done by classifying task difficulty (three classes) and regressing participants' reported level of subjective workload after each task (on a 0–20 scale). Classification of task modality was also studied. For each task, the effect of sensor fusion and task performance were studied. The implemented pipeline consisted of a repeated cross validation approach with grid search applied to three machine learning algorithms. The results showed that three different levels of mental load could be classified with a f1-score of 0.713 using the skin conductance and respiration signals as inputs of a random forest classifier. The best regression model predicted the subjective level of workload with a mean absolute error of 3.195 using the three signals. The accuracy of the model increased with participants' task performance. However, classification of task modality (visual or auditory) was not successful. Some physiological indicators such as estimates of respiratory sinus arrhythmia, respiratory amplitude, and temporal indices of heart rate variability were found to be relevant measures of mental workload. Their use should be preferred for ongoing assessment of driver workload in automated driving.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Xiushan Zhang

Based on the understanding and comparison of various main recommendation algorithms, this paper focuses on the collaborative filtering algorithm and proposes a collaborative filtering recommendation algorithm with improved user model. Firstly, the algorithm considers the score difference caused by different user scoring habits when expressing preferences and adopts the decoupling normalization method to normalize the user scoring data; secondly, considering the forgetting shift of user interest with time, the forgetting function is used to simulate the forgetting law of score, and the weight of time forgetting is introduced into user score to improve the accuracy of recommendation; finally, the similarity calculation is improved when calculating the nearest neighbor set. Based on the Pearson similarity calculation, the effective weight factor is introduced to obtain a more accurate and reliable nearest neighbor set. The algorithm establishes an offline user model, which makes the algorithm have better recommendation efficiency. Two groups of experiments were designed based on the mean absolute error (MAE). One group of experiments tested the parameters in the algorithm, and the other group of experiments compared the proposed algorithm with other algorithms. The experimental results show that the proposed method has better performance in recommendation accuracy and recommendation efficiency.


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Dinda Thalia Andariesta ◽  
Meditya Wasesa

PurposeThis research presents machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic using multisource Internet data.Design/methodology/approachTo develop the prediction models, this research utilizes multisource Internet data from TripAdvisor travel forum and Google Trends. Temporal factors, posts and comments, search queries index and previous tourist arrivals records are set as predictors. Four sets of predictors and three distinct data compositions were utilized for training the machine learning models, namely artificial neural networks (ANNs), support vector regression (SVR) and random forest (RF). To evaluate the models, this research uses three accuracy metrics, namely root mean square error (RMSE), mean absolute error (MAE) and mean absolute percentage error (MAPE).FindingsPrediction models trained using multisource Internet data predictors have better accuracy than those trained using single-source Internet data or other predictors. In addition, using more training sets that cover the phenomenon of interest, such as COVID-19, will enhance the prediction model's learning process and accuracy. The experiments show that the RF models have better prediction accuracy than the ANN and SVR models.Originality/valueFirst, this study pioneers the practice of a multisource Internet data approach in predicting tourist arrivals amid the unprecedented COVID-19 pandemic. Second, the use of multisource Internet data to improve prediction performance is validated with real empirical data. Finally, this is one of the few papers to provide perspectives on the current dynamics of Indonesia's tourism demand.


Sign in / Sign up

Export Citation Format

Share Document